期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Short Term Wind Speed Prediction Using Multiple Kernel Pseudo Inverse Neural Network 被引量:5
1
作者 S.P.Mishra P.K.Dash 《International Journal of Automation and computing》 EI CSCD 2018年第1期66-83,共18页
An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo i... An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours. 展开更多
关键词 Wind speed prediction pseudo inverse neural network kernel ridge regression nonlinear kernels firefly optimizatiotl.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部