Endophytic fungi are being investigated for their ability to create industrially relevant secondary metabolites.In recent years,there has been a surge in interest in these fungi as a source of novel enzymes,particular...Endophytic fungi are being investigated for their ability to create industrially relevant secondary metabolites.In recent years,there has been a surge in interest in these fungi as a source of novel enzymes,particularly hydrolytic enzymes.The present study investigated the effect of different carbon,organic and inorganic nitrogens on the growth and ligninolytic enzyme production by the endophytic fungus Diaporthe phaeolorum.The fungus was isolated from the leaves of Dillenia indica and analyzed by morpho-molecular basis.The fungus showed promising results for in vitro production of ligninolytic enzymes.Sucrose was the most favorable carbon compound for growth among all the carbon compounds tested.It displayed maximum lignin peroxidase(Lip)activity in fructose(3.5 U/ml),followed by pectin(2.60 U/ml)and glucose(2.53 U/ml).Glucose gave the highest manganese peroxidase(MnP)activity i.e.,6.88 U/ml followed by starch,sucrose and raffinose.Similarly,the maximum laccase activity was 44.5 U/ml in pectin.Potassium nitrate and L-asparagine were the best inorganic and organic nitrogen for growth.In the case of ligninolytic enzyme production,ammonium acetate and ammonium phosphate were the best media for LiP and MnP,whereas laccase production was highest in ammonium nitrate supplemented medium.In organic nitrogen sources,medium supplemented with DL-tryptophan gave the highest Lip production,whereas MnP and laccase production was observed in the medium containing L-tyrosine and L-asparagine.To the best of our knowledge,this is the first report related to the growth and ligninolytic enzyme production by Diaporthe phaseolorum.The findings from the study will assist researchers in improving the production of ligninolytic enzymes by this fungus under in vitro conditions on an industrial scale.展开更多
基金Acknowledgments The authors acknowledge the Department of Botany,Panjab University Chandigarh,India,for providing infrastructure and instrumentation.Vijay Kumar is also thankful for Senior Research Fellowship(File No.09/135(0854)/2019-EMR-I)the Council of Scientific and Industrial Research(CSIR),India,during research work.
文摘Endophytic fungi are being investigated for their ability to create industrially relevant secondary metabolites.In recent years,there has been a surge in interest in these fungi as a source of novel enzymes,particularly hydrolytic enzymes.The present study investigated the effect of different carbon,organic and inorganic nitrogens on the growth and ligninolytic enzyme production by the endophytic fungus Diaporthe phaeolorum.The fungus was isolated from the leaves of Dillenia indica and analyzed by morpho-molecular basis.The fungus showed promising results for in vitro production of ligninolytic enzymes.Sucrose was the most favorable carbon compound for growth among all the carbon compounds tested.It displayed maximum lignin peroxidase(Lip)activity in fructose(3.5 U/ml),followed by pectin(2.60 U/ml)and glucose(2.53 U/ml).Glucose gave the highest manganese peroxidase(MnP)activity i.e.,6.88 U/ml followed by starch,sucrose and raffinose.Similarly,the maximum laccase activity was 44.5 U/ml in pectin.Potassium nitrate and L-asparagine were the best inorganic and organic nitrogen for growth.In the case of ligninolytic enzyme production,ammonium acetate and ammonium phosphate were the best media for LiP and MnP,whereas laccase production was highest in ammonium nitrate supplemented medium.In organic nitrogen sources,medium supplemented with DL-tryptophan gave the highest Lip production,whereas MnP and laccase production was observed in the medium containing L-tyrosine and L-asparagine.To the best of our knowledge,this is the first report related to the growth and ligninolytic enzyme production by Diaporthe phaseolorum.The findings from the study will assist researchers in improving the production of ligninolytic enzymes by this fungus under in vitro conditions on an industrial scale.