The antitumor activity of the fourteen polymetalacrylates against two models of murine solid tumors (Lewis lung carcinoma and Acatol adenocarcinoma) as well as the acute toxicity of these compounds has been studied. I...The antitumor activity of the fourteen polymetalacrylates against two models of murine solid tumors (Lewis lung carcinoma and Acatol adenocarcinoma) as well as the acute toxicity of these compounds has been studied. It was shown that polyacrylates of noble metals (argent, aurum, platinum), namely argacryl (М = Ag), auracryl (М = Au) and platacryl (М = Pt) were the most effective agents among tested compounds against studied tumors. Thus, the tumor growth inhibitory effect of argacryl against Lewis lung carcinoma was equal to 90%, the life-span of treated by this compound animals has increased on 50% in comparison with control. Auracryl induced the inhibition of the Lewis lung carcinoma and Acatol adenocarcinoma development on 60 and 65%, correspondingly and the increasing of the mean life-span of animals with Lewis lung carcinoma on 20% in comparison with control. Platacryl inhibited the growth of Lewis lung carcinoma on 40% increasing the mean life-span of animals on 25% in comparison with control. In this way it was established that argacryl is the agent with the strongest antitumor activity among studied polymetalacrylates. On the basis of obtained data it seems possible to consider polymetalacrylates as a group of agents with the potential antitumor activity suitable for the further deep experimental investigation.展开更多
An interest in the fluorescent protein asFP595 is due to unexplained puzzles in its photophysical behavior. We report the results of calculations of structures, absorption, and emission bands in asFP595 by considering...An interest in the fluorescent protein asFP595 is due to unexplained puzzles in its photophysical behavior. We report the results of calculations of structures, absorption, and emission bands in asFP595 by considering model molecular clusters in the coordinate-locking scheme. Both trans and cis conformations of the anionic chromophore are considered. Equilibrium geometry coordinates on the ground potential energy surface were optimized in the density functional theory approaches by considering both large- and reduced-size clusters. The cluster size was reduced to locate positions of the minimum energy points on the excited-state potential surface by using the configuration interaction singles approach. Vertical excitation energies and oscillator strengths were computed by using the ZINDO method. We show that consideration of large clusters mimicking the protein-containing pocket is an essential issue to calculate positions of absorption and emission bands with the accuracy compatible to experiments.展开更多
Role of Ni(Fe)-macrostructures due to H-bonds in mechanisms of Ni(Fe)ARD action in methionine salvage pathway is discussed.The AFM method was used to research the possibility of the formation of stable supramolecular ...Role of Ni(Fe)-macrostructures due to H-bonds in mechanisms of Ni(Fe)ARD action in methionine salvage pathway is discussed.The AFM method was used to research the possibility of the formation of stable supramolecular nanostructures based on Ni(Fe)ARD model systems{Ni(acac)_(2)+L^(2)+Tyr}(L^(2)=NMP(NMP=N-Methyl-2-pirrolidone)),His(His=L-Histidine),Tyr(Tyr=L-Tyrosine)---with the assistance of intermolecular H-bonds.In the course of scanning of investigated samples,it has been found that the structures based on model systems are fixed on a surface strongly enough due to H-bonding.The self-assembly-driven growth of the supramolecular structures on modified Silicone surface based on researched complexes,due to H-bonds and perhaps the other non-covalent interactions was observed.展开更多
Background:The outbreak and continued spread of coronavirus infection(COVID-19)sets the goal of finding new tools and methods to develop analytical procedures and tests to detect,study infection and prevent morbidity....Background:The outbreak and continued spread of coronavirus infection(COVID-19)sets the goal of finding new tools and methods to develop analytical procedures and tests to detect,study infection and prevent morbidity.Methods:The noncovalent binding of cyanine and squarylium dyes of different classes(60 compounds in total)with the proteases NSP3,NSP5,and NSP12 of SARS-CoV-2 was studied by the method of molecular docking.Results:The interaction energies and spatial configurations of dye molecules in complexes with NSP3,NSP5,and NSP12 have been determined.Conclusion:A number of anionic dyes showing lower values of the total energy Etot could be recommended for practical research in the development of agents for the detection and inactivation of the coronavirus.展开更多
文摘The antitumor activity of the fourteen polymetalacrylates against two models of murine solid tumors (Lewis lung carcinoma and Acatol adenocarcinoma) as well as the acute toxicity of these compounds has been studied. It was shown that polyacrylates of noble metals (argent, aurum, platinum), namely argacryl (М = Ag), auracryl (М = Au) and platacryl (М = Pt) were the most effective agents among tested compounds against studied tumors. Thus, the tumor growth inhibitory effect of argacryl against Lewis lung carcinoma was equal to 90%, the life-span of treated by this compound animals has increased on 50% in comparison with control. Auracryl induced the inhibition of the Lewis lung carcinoma and Acatol adenocarcinoma development on 60 and 65%, correspondingly and the increasing of the mean life-span of animals with Lewis lung carcinoma on 20% in comparison with control. Platacryl inhibited the growth of Lewis lung carcinoma on 40% increasing the mean life-span of animals on 25% in comparison with control. In this way it was established that argacryl is the agent with the strongest antitumor activity among studied polymetalacrylates. On the basis of obtained data it seems possible to consider polymetalacrylates as a group of agents with the potential antitumor activity suitable for the further deep experimental investigation.
文摘An interest in the fluorescent protein asFP595 is due to unexplained puzzles in its photophysical behavior. We report the results of calculations of structures, absorption, and emission bands in asFP595 by considering model molecular clusters in the coordinate-locking scheme. Both trans and cis conformations of the anionic chromophore are considered. Equilibrium geometry coordinates on the ground potential energy surface were optimized in the density functional theory approaches by considering both large- and reduced-size clusters. The cluster size was reduced to locate positions of the minimum energy points on the excited-state potential surface by using the configuration interaction singles approach. Vertical excitation energies and oscillator strengths were computed by using the ZINDO method. We show that consideration of large clusters mimicking the protein-containing pocket is an essential issue to calculate positions of absorption and emission bands with the accuracy compatible to experiments.
文摘Role of Ni(Fe)-macrostructures due to H-bonds in mechanisms of Ni(Fe)ARD action in methionine salvage pathway is discussed.The AFM method was used to research the possibility of the formation of stable supramolecular nanostructures based on Ni(Fe)ARD model systems{Ni(acac)_(2)+L^(2)+Tyr}(L^(2)=NMP(NMP=N-Methyl-2-pirrolidone)),His(His=L-Histidine),Tyr(Tyr=L-Tyrosine)---with the assistance of intermolecular H-bonds.In the course of scanning of investigated samples,it has been found that the structures based on model systems are fixed on a surface strongly enough due to H-bonding.The self-assembly-driven growth of the supramolecular structures on modified Silicone surface based on researched complexes,due to H-bonds and perhaps the other non-covalent interactions was observed.
基金Molecular graphicsanalyses performed with UCSF Chimera are developed by the Resource for Biocomputing,VisualizationInformatics at the University of California,San Francisco,with support from NIH P41-GM103311.
文摘Background:The outbreak and continued spread of coronavirus infection(COVID-19)sets the goal of finding new tools and methods to develop analytical procedures and tests to detect,study infection and prevent morbidity.Methods:The noncovalent binding of cyanine and squarylium dyes of different classes(60 compounds in total)with the proteases NSP3,NSP5,and NSP12 of SARS-CoV-2 was studied by the method of molecular docking.Results:The interaction energies and spatial configurations of dye molecules in complexes with NSP3,NSP5,and NSP12 have been determined.Conclusion:A number of anionic dyes showing lower values of the total energy Etot could be recommended for practical research in the development of agents for the detection and inactivation of the coronavirus.