期刊文献+
共找到404篇文章
< 1 2 21 >
每页显示 20 50 100
NASA’s Mission ACTIVATE: Objectives, Strategies, and Limitations
1
作者 Shreyas Banaji 《World Journal of Engineering and Technology》 2022年第4期819-823,共5页
The primary goal of this report is to describe the operational concepts of NASA’s ACTIVATE mission. ACTIVATE hopes to improve the understanding of aerosol dispersion and models, provide accurate data for aerosols’ c... The primary goal of this report is to describe the operational concepts of NASA’s ACTIVATE mission. ACTIVATE hopes to improve the understanding of aerosol dispersion and models, provide accurate data for aerosols’ characterization and ozone profiles, and establish knowledge of the relationships between aerosols and water. ACTIVATE’s science objectives are to quantify Na-CCN-Nd relationships and reduce uncertainty in model cloud droplet activation parameterizations, improve process-level understanding and model representation of factors governing cloud micro/macro-physical properties and how they couple with cloud effects on aerosol, plus assess advanced remote sensing capabilities for retrieving aerosol and cloud properties related to aerosol-cloud interactions. ACTIVATE utilizes the fixed-wing B-200 King Air to collect data. Data collected by ACTIVATE is highly relevant for meteorologists and environmental scientists looking to understand more about aerosol-cloud formations. Finally, ACTIVATE is a 5-year mission spanning from January 2019 to December 2023 and has used, and will continue to use, instruments such as the High Spectral Resolution Lidar-2 (HSRL-2), the Research Scanning Polarimeter (RSP), and the Diode Laser Hygrometer (DLH). 展开更多
关键词 Atmosphere Aerosol-Cloud Interactions Marine Boundary Layer NASA ACTIVATE High Spectral Resolution Lidar-2 Research Scanning Polarimeter Diode Laser Hygrometer
下载PDF
A Lunar LIGO for NASA’s Return to the Moon
2
作者 Thomas L. Wilson 《Journal of Modern Physics》 2021年第4期536-539,共4页
The feasibility of a Lunar LIGO (Laser Interferometer Gravitational-Wave Observatory) was introduced in 1986 as part of NASA’s planned return to the Moon by the end of the last century. That return to the Moon missio... The feasibility of a Lunar LIGO (Laser Interferometer Gravitational-Wave Observatory) was introduced in 1986 as part of NASA’s planned return to the Moon by the end of the last century. That return to the Moon mission was cancelled, but is once again planned as Artemis in 2024. In this paper, the feasibility of such a Lunar LIGO as part of NASA’s return there will be discussed for that program. Details of the physics of the original Lunar LIGO proposal as a potential portion of future lunar base astronomy and astrophysics designs are presented. Results from NASA’s original planned return to the Moon to establish a gravitational wave observatory there are presented and discussed. 展开更多
关键词 Gravitational Waves Astronomy on the Moon ASTROPHYSICS
下载PDF
Hybrid-Vlasov simulation of soft X-ray emissions at the Earth’s dayside magnetospheric boundaries 被引量:2
3
作者 M.Grandin H.K.Connor +5 位作者 S.Hoilijoki M.Battarbee Y.Pfau-Kempf U.Ganse K.Papadakis M.Palmroth 《Earth and Planetary Physics》 EI CSCD 2024年第1期70-88,共19页
Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing tech... Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside. 展开更多
关键词 MAGNETOSPHERE MAGNETOSHEATH numerical simulation SMILE LEXI soft X-ray emissions hybrid-Vlasov model polar cusp flux transfer events mirror-mode waves
下载PDF
Origins of perturbations in dayside equatorial ground magnetograms 被引量:1
4
作者 Syau-Yun W.Hsieh David G.Sibeck 《Earth and Planetary Physics》 EI CSCD 2024年第1期215-221,共7页
To determine the cause(s)of perturbations seen in dayside equatorial ground magnetograms,we conducted a systematic survey of simultaneous ground-based and geosynchronous satellite-based observations during the 90-day ... To determine the cause(s)of perturbations seen in dayside equatorial ground magnetograms,we conducted a systematic survey of simultaneous ground-based and geosynchronous satellite-based observations during the 90-day period from December 1,2020 to February 28,2021.We examined Huancayo ground magnetometer observations from 14:00:00 to 20:00:00 UT each day,during which Huancayo passed through local noon.From those data we chose perturbation events selected on the basis of large(>20 nT)event amplitude and classified the selected events as responding primarily to solar wind pressure,or to variations in the north/south component of the interplanetary magnetic field(IMF Bz),or perhaps in part to both.The results show that an equivalent number of events were identified for each model during this 90-day period.Variations in the lagged solar wind dynamic pressure routinely correspond to nearly simultaneous sudden impulses recorded at both geosynchronous orbit and on the ground.Variations in IMF Bz produce erosion signatures at geosynchronous orbit and can correspond to ground events if lag times for reconnection to enhance convection in the magnetosphere are taken into account. 展开更多
关键词 dayside magnetosphere dayside equatorial ionosphere geosynchronous magnetic field
下载PDF
Finding the magnetopause location using soft X-ray observations and a statistical inverse method 被引量:1
5
作者 Gonzalo Cucho-Padin Hyunju Connor +2 位作者 Jaewoong Jung Brian Walsh David G.Sibeck 《Earth and Planetary Physics》 EI CSCD 2024年第1期184-203,共20页
Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magneto... Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magnetosphere.The spatial and temporal properties of the magnetopause,under varying solar and magnetospheric conditions,remain largely unknown because empirical studies using in-situ observations are challenging to interpret.Global wide field-of-view(FOV)imaging is the only means to simultaneously observe the spatial distribution of the plasma properties over the vast dayside magnetospheric region and,subsequently,quantify the energy transport from the interplanetary medium into the terrestrial magnetosphere.Two upcoming missions,ESA/CAS SMILE and NASA’s LEXI will provide wide-field imagery of the dayside magnetosheath in soft X-rays,an emission generated by charge exchange interactions between high charge-state heavy ions of solar wind origin and exospheric neutral atoms.High-cadence two-dimensional observations of the magnetosheath will allow the estimation of dynamic properties of its inner boundary,the magnetopause,and enable studies of its response to changes in the solar wind dynamic pressure and interplanetary magnetic field orientation.This work introduces a statistically-based estimation approach based on inverse theory to estimate the spatial distribution of magnetosheath soft X-ray emissivities and,with this,identify the location of the magnetopause over the Sun−Earth line.To do so,we simulate the magnetosheath structure using the MHD-based OpenGGCM model and generate synthetic soft X-ray images using LEXI’s orbit and attitude information.Our results show that 3-D estimations using the described statistically-based technique are robust against Poisson-distributed shot noise inherent to soft X-ray images.Also,our proposed methodology shows that the accuracy of both three-dimensional(3-D)estimation and the magnetopause standoff distance calculation highly depends on the observational point. 展开更多
关键词 MAGNETOPAUSE soft X-ray TOMOGRAPHY
下载PDF
Mshpy23:a user-friendly,parameterized model of magnetosheath conditions 被引量:1
6
作者 Jaewoong Jung Hyunju Connor +3 位作者 Andrew Dimmock Steve Sembay Andrew Read Jan Soucek 《Earth and Planetary Physics》 EI CSCD 2024年第1期89-104,共16页
Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind−Magnetosphere−Ionosphere Link Explorer(SMILE)will observe magnetosheath and its boundary motion in soft X-rays for understanding magnetopause reconnectio... Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind−Magnetosphere−Ionosphere Link Explorer(SMILE)will observe magnetosheath and its boundary motion in soft X-rays for understanding magnetopause reconnection modes under various solar wind conditions after their respective launches in 2024 and 2025.Magnetosheath conditions,namely,plasma density,velocity,and temperature,are key parameters for predicting and analyzing soft X-ray images from the LEXI and SMILE missions.We developed a userfriendly model of magnetosheath that parameterizes number density,velocity,temperature,and magnetic field by utilizing the global Magnetohydrodynamics(MHD)model as well as the pre-existing gas-dynamic and analytic models.Using this parameterized magnetosheath model,scientists can easily reconstruct expected soft X-ray images and utilize them for analysis of observed images of LEXI and SMILE without simulating the complicated global magnetosphere models.First,we created an MHD-based magnetosheath model by running a total of 14 OpenGGCM global MHD simulations under 7 solar wind densities(1,5,10,15,20,25,and 30 cm)and 2 interplanetary magnetic field Bz components(±4 nT),and then parameterizing the results in new magnetosheath conditions.We compared the magnetosheath model result with THEMIS statistical data and it showed good agreement with a weighted Pearson correlation coefficient greater than 0.77,especially for plasma density and plasma velocity.Second,we compiled a suite of magnetosheath models incorporating previous magnetosheath models(gas-dynamic,analytic),and did two case studies to test the performance.The MHD-based model was comparable to or better than the previous models while providing self-consistency among the magnetosheath parameters.Third,we constructed a tool to calculate a soft X-ray image from any given vantage point,which can support the planning and data analysis of the aforementioned LEXI and SMILE missions.A release of the code has been uploaded to a Github repository. 展开更多
关键词 MAGNETOSHEATH PYTHON MODELING
下载PDF
Estimating the subsolar magnetopause position from soft X-ray images using a low-pass image filter 被引量:1
7
作者 Hyangpyo Kim Hyunju K.Connor +9 位作者 Jaewoong Jung Brian M.Walsh David Sibeck Kip D.Kuntz Frederick S.Porter Catriana K.Paw U Rousseau A.Nutter Ramiz Qudsi Rumi Nakamura Michael Collier 《Earth and Planetary Physics》 EI CSCD 2024年第1期173-183,共11页
The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective l... The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives. 展开更多
关键词 soft X-ray MAGNETOPAUSE RECONNECTION low-pass filter LEXI SMILE
下载PDF
Preface to the Special Issue on Modeling and Data Analysis Methods for the SMILE mission
8
作者 TianRan Sun Hyunju Connor Andrey Samsonov 《Earth and Planetary Physics》 EI CSCD 2024年第1期1-4,共4页
The SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)project(http://www.nssc.cas.cn/smile/,https://www.cosmos.esa.int/web/smile/mission)is a joint spacecraft mission of the European Space Agency(ESA)and the Chi... The SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)project(http://www.nssc.cas.cn/smile/,https://www.cosmos.esa.int/web/smile/mission)is a joint spacecraft mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)with an expected launch in 2025.SMILE aims to study the global interactions of solar wind–magnetosphere–ionosphere innovatively by imaging the Earth’s magnetosheath and cusps in soft X-rays and the northern auroral region in ultraviolet(UV)while simultaneously measuring plasma and magnetic field parameters in the solar wind and magnetosheath along a highly-elliptical and highly-inclined orbit.This special issue is composed of 22 articles,presenting recent progress in modeling and data analysis techniques developed for the SMILE mission.In this preface,we categorize the articles into the following seven topics and provide brief summaries:(1)instrument descriptions of the Soft X-ray Imager(SXI),(2)numerical modeling of the X-ray signals,(3)data processing of the X-ray images,(4)boundary tracing methods from the simulated images,(5)physical phenomena and a mission concept related to the scientific goals of SMILE-SXI,(6)studies of the aurora,and(7)ground-based support for SMILE. 展开更多
关键词 SMILE X-ray imaging MAGNETOSPHERE auroral IONOSPHERE
下载PDF
The magnetosheath at high spectral resolution 被引量:1
9
作者 K.D.Küntz D.Koutroumpa +4 位作者 W.R.Dunn A.Foster F.S.Porter D.G.Sibeck B.Walsh 《Earth and Planetary Physics》 EI CSCD 2024年第1期234-246,共13页
While we eagerly anticipate SMILE’s(Solar wind Magnetosphere Ionosphere Link Explorer)unprecedented X-ray observations of the Earth’s magnetosheath and the initiation of a new era of magnetospheric research,it seems... While we eagerly anticipate SMILE’s(Solar wind Magnetosphere Ionosphere Link Explorer)unprecedented X-ray observations of the Earth’s magnetosheath and the initiation of a new era of magnetospheric research,it seems appropriate to look ahead to the abilities of the next generation of astrophysics missions.Of these,the Line Emission Mapper(LEM),a large aperture micro-calorimeter based mission,is currently planned to be able to observe the magnetosheath at high spectral resolution(~2 eV).With a field of view of~30′,LEM will allow higher spatial resolution and higher cadence measurement of the motion of a very small portion of the magnetopause over relatively short periods of time(multiple hours),complementing SMILE’s global mapping.LEM’s strength is its spectral resolution.It will be able to measure the abundance of a broad range of elements and ionization states,many of which are inaccessible to current in situ instruments,and will be able to separate the emission from the magnetosheath from the emission from the cosmic X-ray background using the difference in their relative velocities. 展开更多
关键词 MAGNETOSHEATH charge exchange solar wind abundances
下载PDF
AN INTRODUCTION TO THE NASA EAST PACIFIC ORIGINS AND CHARACTERISTICS OF HURRICANES(EPOCH) FIELD CAMPAIGN
10
作者 AMBER E.EMORY MATTHEW MCLINDEN +1 位作者 MATHIAS SCHREIER GARY A.WICK 《Tropical Cyclone Research and Review》 2015年第3期124-131,共8页
Over the past fi ve years, tropical activity in the East Pacifi c has increased, while declining in the Atlantic Basin. In addition, during El Ni?o years, warmer than average sea surface temperatures further increase ... Over the past fi ve years, tropical activity in the East Pacifi c has increased, while declining in the Atlantic Basin. In addition, during El Ni?o years, warmer than average sea surface temperatures further increase the likelihood of tropical cyclone formation in the East Pacifi c. Hurricane fi eld campaigns used the Ku-/Ka-band HighAltitude Wind and Rain Airborne Profi ler(HIWRAP) radar on the Global Hawk(GH) unmanned aircraft, in GRIP(Genesis and Rapid Intensifi cation Processes 2010), HS3(Hurricane and Severe Storm Sentinel 2012-14), and the NOAA Sensing Hazards with Operational Unmanned Technology(SHOUT 2015-16) fi eld campaigns. Although originally designed for the GH, the X-band high-altitude RADar(EXRAD) has yet to be integrated and fl own on an unmanned aerial vehicle. EXRAD will provide data with less attenuation of signal over deep convection as well as better estimates of three-dimensional winds with its nadir-pointing beam. As part of the NASA Hand On Project Experience(HOPE) Training Opportunity, our team proposed to fl y the AV-6 GH aircraft with the EXRAD radar, the High Altitude MMIC Sounding Radiometer(HAMSR), and NOAA Advanced Vertical Atmospheric Profi ling System(AVAPS) dropsondes to investigate genesis and/or rapid intensifi cation(RI) of an East Pacifi c hurricane by measuring both the environment and interior structures. Information on planned activities primarily focused on the EXRAD high-altitude radar integration for the July-August 2017 science fl ight will be presented. 展开更多
关键词 GH FIELD CAMPAIGN AN INTRODUCTION TO THE NASA EAST PACIFIC ORIGINS AND CHARACTERISTICS OF HURRICANES EPOCH
原文传递
Confirmation of a Sub-Saturn-size Transiting Exoplanet Orbiting a G Dwarf:TOI-1194 b and a Very Low Mass Companion Star: TOI-1251 B from TESS
11
作者 Jia-Qi Wang Xiao-Jun Jiang +18 位作者 Jie Zheng Hanna Kellermann Arno Riffeser Liang Wang Karen A.Collins Allyson Bieryla Lars A.Buchhave Steve B.Howell Elise Furlan Eric Girardin Joao Gregorio Eric Jensen Felipe Murgas Mesut Yilmaz Sam Quinn Xing Gao Ruo-Yu Zhou Frank Grupp Hui-Juan Wang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第3期129-143,共15页
We report the confirmation of a sub-Saturn-size exoplanet,TOI-1194 b,with a mass of about 0.456+0.055-0.051M_(J),and a very low mass companion star with a mass of about 96.5±1.5 MJ,TOI-1251 B.Exoplanet candidates... We report the confirmation of a sub-Saturn-size exoplanet,TOI-1194 b,with a mass of about 0.456+0.055-0.051M_(J),and a very low mass companion star with a mass of about 96.5±1.5 MJ,TOI-1251 B.Exoplanet candidates provided by the Transiting Exoplanet Survey Satellite(TESS)are suitable for further follow-up observations by ground-based telescopes with small and medium apertures.The analysis is performed based on data from several telescopes worldwide,including telescopes in the Sino-German multiband photometric campaign,which aimed at confirming TESS Objects of Interest(TOIs)using ground-based small-aperture and medium-aperture telescopes,especially for long-period targets.TOI-1194 b is confirmed based on the consistent periodic transit depths from the multiband photometric data.We measure an orbital period of 2.310644±0.000001 days,the radius is 0.767+0.045-0.041RJ and the amplitude of the RV curve is 69.4_(-7.3)^(+7.9)m s^(-1).TOI-1251 B is confirmed based on the multiband photometric and high-resolution spectroscopic data,whose orbital period is 5.963054+0.000002-0.000001days,radius is 0.947+0.035-0.033 R_(J) and amplitude of the RV curve is 9849_(-40)^(+42)ms^(-1). 展开更多
关键词 planets and satellites fundamental parameters-planets and satellites gaseous planets-stars fundamental parameters-stars low-mass-methods data analysis-techniques photometric-techniques spectroscopic
下载PDF
The Soft X-ray Imager(SXI)on the SMILE Mission 被引量:4
12
作者 S.Sembay A.L.Alme +83 位作者 D.Agnolon T.Arnold A.Beardmore A.Belén Balado Margeli C.Bicknell C.Bouldin G.Branduardi-Raymont T.Crawford J.P.Breuer T.Buggey G.Butcher R.Canchal J.A.Carter A.Cheney Y.Collado-Vega H.Connor T.Crawford N.Eaton C.Feldman C.Forsyth T.Frantzen G.Galgóczi J.Garcia G.Y.Genov C.Gordillo H-P.Gröbelbauer M.Guedel Y.Guo M.Hailey D.Hall R.Hampson J.Hasiba O.Hetherington A.Holland S-Y.Hsieh M.W.J.Hubbard H.Jeszenszky M.Jones T.Kennedy K.Koch-Mehrin S.Kögl S.Krucker K.D.Kuntz C.Lakin G.Laky O.Lylund A.Martindale J.Miguel Mas Hesse R.Nakamura K.Oksavik N.Østgaard H.Ottacher R.Ottensamer C.Pagani S.Parsons P.Patel J.Pearson G.Peikert F.S.Porter T.Pouliantis B.H.Qureshi W.Raab G.Randal A.M.Read N.M.M.Roque M.E.Rostad C.Runciman S.Sachdev A.Samsonov M.Soman D.Sibeck S.Smit J.Søndergaard R.Speight S.Stavland M.Steller TianRan Sun J.Thornhill W.Thomas K.Ullaland B.Walsh D.Walton C.Wang S.Yang 《Earth and Planetary Physics》 EI CSCD 2024年第1期5-14,共10页
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese... The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States. 展开更多
关键词 Soft X-ray Imaging micropore optics large area CCD
下载PDF
Ground-based and additional science support for SMILE 被引量:2
13
作者 J.A.Carter M.Dunlop +46 位作者 C.Forsyth K.Oksavik E.Donovon A.Kavanagh S.E.Milan T.Sergienko R.C.Fear D.G.Sibeck M.Connors T.Yeoman X.Tan M.G.G.T.Taylor K.McWilliams J.Gjerloev R.Barnes D.D.Billet G.Chisham A.Dimmock M.P.Freeman D.-S.Han M.D.Hartinger S.-Y.W.Hsieh Z.-J.Hu M.K.James L.Juusola K.Kauristie E.A.Kronberg M.Lester J.Manuel J.Matzka I.McCrea Y.Miyoshi J.Rae L.Ren F.Sigernes E.Spanswick K.Sterne A.Steuwer T.Sun M.-T.Walach B.Walsh C.Wang J.Weygand J.Wild J.Yan J.Zhang Q.-H.Zhang 《Earth and Planetary Physics》 EI CSCD 2024年第1期275-298,共24页
The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplane... The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions,and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere.Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission.Here,we describe current community efforts to prepare for SMILE,and the benefits and context various experiments that have explicitly expressed support for SMILE can offer.A dedicated group of international scientists representing many different experiment types and geographical locations,the Ground-based and Additional Science Working Group,is facilitating these efforts.Preparations include constructing an online SMILE Data Fusion Facility,the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar,and the consideration of particular observing strategies and spacecraft conjunctions.We anticipate growing interest and community engagement with the SMILE mission,and we welcome novel ideas and insights from the solar-terrestrial community. 展开更多
关键词 MAGNETOSPHERE IONOSPHERE magnetosphere-ionosphere coupling ground-based experimentation SMILE CONJUNCTIONS MISSIONS
下载PDF
Microbiome-liver crosstalk:A multihit therapeutic target for liver disease 被引量:1
14
作者 Jorum Kirundi Sheida Moghadamrad Camilla Urbaniak 《World Journal of Gastroenterology》 SCIE CAS 2023年第11期1651-1668,共18页
Liver disease has become a leading cause of death,particularly in the West,where it is attributed to more than two million deaths annually.The correlation between gut microbiota and liver disease is still not fully un... Liver disease has become a leading cause of death,particularly in the West,where it is attributed to more than two million deaths annually.The correlation between gut microbiota and liver disease is still not fully understood.However,it is well known that gut dysbiosis accompanied by a leaky gut causes an increase in lipopolysaccharides in circulation,which in turn evoke massive hepatic inflammation promoting liver cirrhosis.Microbial dysbiosis also leads to poor bile acid metabolism and low short-chain fatty acids,all of which exacerbate the inflammatory response of liver cells.Gut microbial homeostasis is maintained through intricate processes that ensure that commensal microbes adapt to the low oxygen potential of the gut and that they rapidly occupy all the intestinal niches,thus outcompeting any potential pathogens for available nutrients.The crosstalk between the gut microbiota and its metabolites also guarantee an intact gut barrier.These processes that protect against destabilization of gut microbes by potential entry of pathogenic bacteria are collectively called colonization resistance and are equally essential for liver health.In this review,we shall investigate how the mechanisms of colonization resistance influence the liver in health and disease and the microbial-liver crosstalk potential as therapeutic target areas. 展开更多
关键词 MICROBIOME Nonalcoholic fatty liver disease Nonalcoholic steatohepatitis Liver disease Microbiome-host crosstalk Gut homeostasis Microbial metabolites
下载PDF
Construction of Conservative Numerical Fluxes for the Entropy Split Method
15
作者 Björn Sjögreen H.C.Yee 《Communications on Applied Mathematics and Computation》 2023年第2期653-678,共26页
The entropy split method is based on the physical entropies of the thermally perfect gas Euler equations.The Euler flux derivatives are approximated as a sum of a conservative portion and a non-conservative portion in... The entropy split method is based on the physical entropies of the thermally perfect gas Euler equations.The Euler flux derivatives are approximated as a sum of a conservative portion and a non-conservative portion in conjunction with summation-by-parts(SBP)difference boundary closure of(Gerritsen and Olsson in J Comput Phys 129:245-262,1996;Olsson and Oliger in RIACS Tech Rep 94.01,1994;Yee et al.in J Comp Phys 162:33-81,2000).Sj?green and Yee(J Sci Comput)recently proved that the entropy split method is entropy conservative and stable.Stand-ard high-order spatial central differencing as well as high order central spatial dispersion relation preserving(DRP)spatial differencing is part of the entropy stable split methodol-ogy framework.The current work is our first attempt to derive a high order conservative numerical flux for the non-conservative portion of the entropy splitting of the Euler flux derivatives.Due to the construction,this conservative numerical flux requires higher oper-ations count and is less stable than the original semi-conservative split method.However,the Tadmor entropy conservative(EC)method(Tadmor in Acta Numerica 12:451-512,2003)of the same order requires more operations count than the new construction.Since the entropy split method is a semi-conservative skew-symmetric splitting of the Euler flux derivative,a modified nonlinear filter approach of(Yee et al.in J Comput Phys 150:199-238,1999,J Comp Phys 162:3381,2000;Yee and Sj?green in J Comput Phys 225:910934,2007,High Order Filter Methods for Wide Range of Compressible flow Speeds.Proceedings of the ICOSAHOM09,June 22-26,Trondheim,Norway,2009)is proposed in conjunction with the entropy split method as the base method for problems containing shock waves.Long-time integration of 2D and 3D test cases is included to show the com-parison of these new approaches. 展开更多
关键词 Finite-difference method Entropy conservation Entropy splitting Shock capturing
下载PDF
Preventing the Deluge: Climate Change, the Four Spheres, Interactions, and Causalities
16
作者 Shreyas Banaji 《Atmospheric and Climate Sciences》 CAS 2023年第1期1-9,共9页
Climate change means water change, and the impacts of climate change cause not only global sea levels to rise, but also elicit dangerous levels of coastal and mainland flooding. This study relates the effects of clima... Climate change means water change, and the impacts of climate change cause not only global sea levels to rise, but also elicit dangerous levels of coastal and mainland flooding. This study relates the effects of climate-change-induced sea level risings to several harmful, and sometimes preventable, factors causing floods. One topic discussed here will be the ocean’s current (more specifically, “The Atlantic Meridional Overturning Current”) as it continues to warm with increasing temperatures. In addition to discussing the effects of the AMOC, it also relates the increasing causes that are contributing to flooding, plus the proliferation of melt from ice sheets, ice caps, and glaciers, which inevitably contributes to the devastating effects of flooding on coastal communities, destroying habitats and contributing to the extinction of both aquatic and land animals, and even impacting human infrastructure and livelihoods. This examination additionally presents the serious implications that climate change and flooding have had on the planet’s freshwater resources and reserves, which are being further destroyed by the added influx of salt water, causing water to then be treated with aquifers, an energy-intensive and highly expensive process. Lastly, this paper provides several suggested possibilities for curbing some of the harmful effects humans have already had on contributing to climate change, as well as the environmental factors that have further caused dangerous levels of flooding. 展开更多
关键词 Climate Change FLOODING Toxic Algae Water Cycles Precipitation RUNOFF CURRENTS Glaciers WEATHER
下载PDF
Nitrogen Dioxide, Carbon Monoxide, Natural and Anthropomorphic Effects, and Earth’s Changing Climate
17
作者 Shreyas Banaji 《Atmospheric and Climate Sciences》 CAS 2023年第1期62-71,共10页
This study will both compare and contrast the characteristics and roles of two pollutants: nitrogen dioxide and carbon monoxide. It will begin by tracing each gas’ negative contributions to the Earth’s spheres, as w... This study will both compare and contrast the characteristics and roles of two pollutants: nitrogen dioxide and carbon monoxide. It will begin by tracing each gas’ negative contributions to the Earth’s spheres, as well as relate any negative links that each plays concerning human activity, health, and interaction with the environment. It will include an in-depth analysis of what the proliferation of such toxic gases indicates about human production and causality, plus reflect on any current attempts being made to improve the effects of these pollutants on the environment. This examination will also inspect three NASA missions, i.e., MOPITT/Terra, AIRS/Aqua, and OMI/Aura, the aim of which, among many other tasks, is to detect pollutants within the Earth’s various spheres, as well as analyze weather anomalies, improve prediction methodology, and chronicle meteorological patterns for future study. It will also cover some of the goals, engineering breakthroughs, and in one case, the limitations, of these three satellite missions. Finally, it should be noted that in all stages of this discussion, the author’s main aim will be to focus on the positives that need to be implemented in order to improve the current situations that both anthropogenic and natural disasters have created for the planet. 展开更多
关键词 Carbon Monoxide Nitrogen Dioxide Climate Change ATMOSPHERE Greenhouse Gases
下载PDF
The Complex Field Theory and Mass Formation—An Alternative Model to Higgs Mechanism
18
作者 Hossin Abdeldayem 《Journal of Modern Physics》 CAS 2023年第5期562-572,共11页
The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe... The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe the most basic building blocks of matter and govern the universe. Despite the model’s great success in resolving many issues in particle physics but still has several setbacks and limitations. The model failed to incorporate the fourth force of gravity. It infers that all fermions and bosons are massless contrary to experimental facts. In addition, the model addresses neither the 95% of the universe’s energy of Dark Matter (DM) and Dark Energy (DE) nor the universe’s expansion. The Complex Field Theory (CFT) identifies DM and DE as complex fields of complex masses and charges that encompasses the whole universe, and pervade all matter. This presumption resolves the issue of failing to detect DM and DE for the last five decades. The theory also presents a model for the universe’s expansion and presumes that every material object carries a fraction of this complex field proportional to its mass. These premises clearly explain the physical nature of the gravitational force and its complex field and pave the way for gravity into the SM. On the other hand, to solve the issue of massless bosons and fermions in the SM, Higgs mechanism introduces a pure and abstractive theoretical model of unimaginable four potentials to generate fictitious bosons as mass donors to fermions and W± and Z bosons. The CFT in this paper introduces, for the first time, a physical explanation to the mystery of the mass formation of particles rather than Higgs’ pure mathematical derivations. The analyses lead to uncovering the mystery of electron-positron production near heavy nuclei and never in a vacuum. In addition, it puts a constraint on Einstein’s mass-energy equation that energy can never be converted to mass without the presence of dense dark matter and cannot be true in a vacuum. Furthermore, CFT provides different perspectives and resolves real-world physics concepts such as the nuclear force, Casimir force, Lamb’s shift, and the anomalous magnetic moment to be published elsewhere. 展开更多
关键词 Quantum Field Theory Complex Field Theory Standard Model Higgs Mechanism BOSONS FERMIONS
下载PDF
Feature identification in complex fluid flows by convolutional neural networks
19
作者 Shizheng Wen Michael W.Lee +2 位作者 Kai M.Kruger Bastos Ian K.Eldridge-Allegra Earl H.Dowell 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期447-454,共8页
Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognit... Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics.In this paper,a single-layer convolutional neural network(CNN)was trained to recognize three qualitatively different subsonic buffet flows(periodic,quasi-periodic and chaotic)over a high-incidence airfoil,and a near-perfect accuracy was obtained with only a small training dataset.The convolutional kernels and corresponding feature maps,developed by the model with no temporal information provided,identified large-scale coherent structures in agreement with those known to be associated with buffet flows.Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored.The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers. 展开更多
关键词 Subsonic buffet flows Feature identification Convolutional neural network Long-short term memory
下载PDF
Proposed Wave Momentum Source for Generating the 22-Year Solar Cycle
20
作者 Hans G. Mayr 《International Journal of Astronomy and Astrophysics》 2023年第2期74-88,共15页
For the 22-year solar cycle oscillation there is no external time dependent source. A nonlinear oscillation, the solar cycle must be generated internally, and Babcock-Leighton models apply an artificial nonlinear sour... For the 22-year solar cycle oscillation there is no external time dependent source. A nonlinear oscillation, the solar cycle must be generated internally, and Babcock-Leighton models apply an artificial nonlinear source term that can simulate the observations—which leaves open the question of the actual source mechanism for the solar cycle. Addressing this question, we propose to take guidance from the wave mechanism that generates the 2-year Quasi-biennial Oscillation (QBO) in the Earth atmosphere. Upward propagating gravity waves, eastward and westward, deposit momentum to generate the observed zonal wind oscillation. On the Sun, helioseismology has provided a thorough understanding of the acoustic p-waves, which propagate down into the convective envelope guided by the increasing temperature and related propagation velocity. Near the tachocline with low turbulent viscosity, the waves propagating eastward and westward can produce an axisymmetric 22-year oscillation of the zonal flow velocities that can generate the magnetic solar dynamo. Following the Earth model, waves in opposite directions can generate in the Sun wind and magnetic field oscillations in opposite directions, the proposition of a potential solar cycle mechanism. 展开更多
关键词 Dynamo Models Apply Artificial Nonlinearity Wave Generated Nonlinear Terrestrial 2-Year Oscillation Model-Analogue Example Helioseismology Wave Source Proposed for Solar Cycle Mechanism
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部