The study on the interaction of cisplatin with guanosine in neutral solution by 13C NMR spectroscopy has shown that besides the formation of [Pt(NH3)2(N7-Guo)2]2+, a new 1:1 complex [Pt(NH3)2(N7.N1-GuoH-1)]nn+, ...The study on the interaction of cisplatin with guanosine in neutral solution by 13C NMR spectroscopy has shown that besides the formation of [Pt(NH3)2(N7-Guo)2]2+, a new 1:1 complex [Pt(NH3)2(N7.N1-GuoH-1)]nn+, in which deprotonated guanosine was bonded to platium by N1 and N7 atoms, was also formed. Recently we have succeed-展开更多
In eukaryotes, the RNase-Ⅲ Dicer often produces length/sequence microRNA (miRNA) variants, called "isomiRs", owing to intrinsic structural/sequence determinants of the miRNA precursors (pre-miRNAs). In this stu...In eukaryotes, the RNase-Ⅲ Dicer often produces length/sequence microRNA (miRNA) variants, called "isomiRs", owing to intrinsic structural/sequence determinants of the miRNA precursors (pre-miRNAs). In this study, we combined biophysics, genetics and biochemistry approaches to study Arabidopsis miR168, the key feedback regulator of central plant silencing effector protein ARGONAUTE1 (AGO1). We identified a motif conserved among plant premiR168 orthologs, which enables flexible internal basepairing underlying at least three metastable structural configurations. These configurations promote alternative, accurate Dicer cleavage events generating length and structural isomiR168 variants with distinctive AGO sorting properties and modes of action. Among these isomiR168s, a duplex with a 22-nt guide strand exhibits strikingly preferential affinity for AGO10, the closest AGO1 paralog. The 22-nt miR168-AGO10 complex antagonizes AGO1 accumulation in part via "transitive RNAi", a silencing-amplification process, to maintain appropriate AGO1 cellular homeostasis. Furthermore, we found that the tombusviral P19 silencing-suppressor protein displays markedly weaker affinity for the 22-nt form among its isomiR168 cargoes, thereby promoting AGO10-directed suppression of AGOl-mediated antiviral silencing. Taken together, these findings indicate that structural flexibility, a previously overlooked property of premiRNAs, considerably increases the versatility and regulatory potential of individual MIRNA genes, and that some pathogens might have evolved the capacity or mechanisms to usurp this property.展开更多
Different from canonical ubiquitin-like proteins, Hub1 does not form covalent conjugates with substrates but binds proteins noncovalently. In Socchoromyces cerevisioe, Hub1 associates with spUceosomes and mediates alt...Different from canonical ubiquitin-like proteins, Hub1 does not form covalent conjugates with substrates but binds proteins noncovalently. In Socchoromyces cerevisioe, Hub1 associates with spUceosomes and mediates alternative splicing of SRCI, without affecting pre-mRNA splicing generaity. Human Hub1 is highty similar to its yeast homotog, but its cellular function remains largely unexplored. Here, we show that human Hub1 binds to the spliceosomal protein Snu66 as in yeast; however, unlike its 5. cerevisioe homolos, human Hub1 is essential for viability. Prolonged in vivo depletion of human Hub1 leads to various cellular defects, including splicing speckle abnormalities, partial nuclear retention of mRNAs, mitotic catastrophe, and consequently cell death by apoptosis. Early consequences of Hub1 depletion are severe splicing defects, however, only for specific splice sites leading to exon skipping and intron retention. Thus, the ubiquitin-iike protein Hub1 is not a canonlcal spliceosomal factor needed generally for splicing, but rather a modulator of spliceosome performance and facilitator of alternative splicing.展开更多
文摘The study on the interaction of cisplatin with guanosine in neutral solution by 13C NMR spectroscopy has shown that besides the formation of [Pt(NH3)2(N7-Guo)2]2+, a new 1:1 complex [Pt(NH3)2(N7.N1-GuoH-1)]nn+, in which deprotonated guanosine was bonded to platium by N1 and N7 atoms, was also formed. Recently we have succeed-
基金The NCCR RNA and disease funded by the Swiss National Science Foundation (SNF 51NF40_141735) for access to the Biomolecular NMR spectrometry platform at ETH ZUrich. This work was supported by an IIF Marie Curie fellowship to TI (no. 329029) and a European Research Council (ERC) advanced grant "Frontiers of RNAi-Ⅱ" to OV (no. 323071).
文摘In eukaryotes, the RNase-Ⅲ Dicer often produces length/sequence microRNA (miRNA) variants, called "isomiRs", owing to intrinsic structural/sequence determinants of the miRNA precursors (pre-miRNAs). In this study, we combined biophysics, genetics and biochemistry approaches to study Arabidopsis miR168, the key feedback regulator of central plant silencing effector protein ARGONAUTE1 (AGO1). We identified a motif conserved among plant premiR168 orthologs, which enables flexible internal basepairing underlying at least three metastable structural configurations. These configurations promote alternative, accurate Dicer cleavage events generating length and structural isomiR168 variants with distinctive AGO sorting properties and modes of action. Among these isomiR168s, a duplex with a 22-nt guide strand exhibits strikingly preferential affinity for AGO10, the closest AGO1 paralog. The 22-nt miR168-AGO10 complex antagonizes AGO1 accumulation in part via "transitive RNAi", a silencing-amplification process, to maintain appropriate AGO1 cellular homeostasis. Furthermore, we found that the tombusviral P19 silencing-suppressor protein displays markedly weaker affinity for the 22-nt form among its isomiR168 cargoes, thereby promoting AGO10-directed suppression of AGOl-mediated antiviral silencing. Taken together, these findings indicate that structural flexibility, a previously overlooked property of premiRNAs, considerably increases the versatility and regulatory potential of individual MIRNA genes, and that some pathogens might have evolved the capacity or mechanisms to usurp this property.
文摘Different from canonical ubiquitin-like proteins, Hub1 does not form covalent conjugates with substrates but binds proteins noncovalently. In Socchoromyces cerevisioe, Hub1 associates with spUceosomes and mediates alternative splicing of SRCI, without affecting pre-mRNA splicing generaity. Human Hub1 is highty similar to its yeast homotog, but its cellular function remains largely unexplored. Here, we show that human Hub1 binds to the spliceosomal protein Snu66 as in yeast; however, unlike its 5. cerevisioe homolos, human Hub1 is essential for viability. Prolonged in vivo depletion of human Hub1 leads to various cellular defects, including splicing speckle abnormalities, partial nuclear retention of mRNAs, mitotic catastrophe, and consequently cell death by apoptosis. Early consequences of Hub1 depletion are severe splicing defects, however, only for specific splice sites leading to exon skipping and intron retention. Thus, the ubiquitin-iike protein Hub1 is not a canonlcal spliceosomal factor needed generally for splicing, but rather a modulator of spliceosome performance and facilitator of alternative splicing.