The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin fil...The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin film,employing a self-forming cracked template.Precise control over the cracked template's structure is achieved through careful adjustment of temperature and humidity.The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells.It is revealed that predominant fill factor(FF)is influenced by the figure of merit of transparent conducting electrodes,rather than sheet resistance,particularly when the coverage area falls within the range of 1.3–5%.Furthermore,a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar.When utilizing a thinner AZO film,CIGS solar cells with a surface area of 1.0609 cm^(2)exhibit a notable performance improvement,with efficiency increasing from 10.48%to 11.63%.This enhancement is primarily attributed to the increase in FF from 45%to 65%.These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide(TCO)in CIGS modules with implications for practical applications in photovoltaic technology.展开更多
Here, undoped and Cu doped ZnO nanoparticles(NPs) have been prepared by chemical co-precipitation technique. X-ray diffraction(XRD) results reveal that Cu ions are successfully doped into ZnO matrix without altering i...Here, undoped and Cu doped ZnO nanoparticles(NPs) have been prepared by chemical co-precipitation technique. X-ray diffraction(XRD) results reveal that Cu ions are successfully doped into ZnO matrix without altering its wurtzite phase. The single wurtzite phase of ZnO is retained even for 10 wt% Cu doped ZnO sample. It is observed from the electron microscopy results that higher level of Cu doping varies the morphology of ZnO NPs from spherical to flat NPs. Moreover, the particle size is found to increase with the increase in Cu doping level. Raman spectroscopy results further confirm that Cu dopant has not altered the wurtzite structure of ZnO. Impedance spectroscopy results reveal that the dielectric constant and dielectric loss have increasing trend with Cu doping. Cu doping has been found to slightly decrease the bactericidal potency of ZnO nanoparticles.展开更多
Three-dimensional(3D)bioprinting,an additive manufacturing based technique of biomaterials fabrication,is an innovative and auspicious strategy in medical and pharmaceutical fields.The ability of producing regenerativ...Three-dimensional(3D)bioprinting,an additive manufacturing based technique of biomaterials fabrication,is an innovative and auspicious strategy in medical and pharmaceutical fields.The ability of producing regenerative tissues and organs has made this technology a pioneer to the creation of artificial multi-cellular tissues/organs.A broad variety of biomaterials is currently being utilized in 3D bioprinting as well as multiple techniques employed by researchers.In this review,we demonstrate the most common and novel biomaterials in 3D bioprinting technology further with introducing the related techniques that are commonly taking into account by researchers.In addition,an attempt has been accomplished to hand over the most relevant application of 3D bioprinting techniques such as tissue regeneration,cancer investigations,etc.by presenting the most important works.The main aim of this review paper is to emphasis on strengths and limitations of existence biomaterials and 3D bioprinting techniques in order to carry out a comparison through them.展开更多
基金the National Research Foundation of Korea(NRF)The specific grants that facilitated this study include No.2021R1A5A8033165,RS-2023-00249229,2022M3J1A1085371,and 2023R1A2C1007386+1 种基金supported by the Human Resource Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),under grant No.20214000000200funded by the Ministry of Science and ICT(MSIT),the Ministry of Education,and the Ministry of Trade,Industry&Energy of the Republic of Korea.
文摘The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin film,employing a self-forming cracked template.Precise control over the cracked template's structure is achieved through careful adjustment of temperature and humidity.The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells.It is revealed that predominant fill factor(FF)is influenced by the figure of merit of transparent conducting electrodes,rather than sheet resistance,particularly when the coverage area falls within the range of 1.3–5%.Furthermore,a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar.When utilizing a thinner AZO film,CIGS solar cells with a surface area of 1.0609 cm^(2)exhibit a notable performance improvement,with efficiency increasing from 10.48%to 11.63%.This enhancement is primarily attributed to the increase in FF from 45%to 65%.These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide(TCO)in CIGS modules with implications for practical applications in photovoltaic technology.
基金funded by the Higher Education Commission, Pakistan (HEC) IPFP (Grant No. PM-IPFP/HRD/HEC/2011/3386)funding for HEC Ph.D. Scholar (Tariq Jan)
文摘Here, undoped and Cu doped ZnO nanoparticles(NPs) have been prepared by chemical co-precipitation technique. X-ray diffraction(XRD) results reveal that Cu ions are successfully doped into ZnO matrix without altering its wurtzite phase. The single wurtzite phase of ZnO is retained even for 10 wt% Cu doped ZnO sample. It is observed from the electron microscopy results that higher level of Cu doping varies the morphology of ZnO NPs from spherical to flat NPs. Moreover, the particle size is found to increase with the increase in Cu doping level. Raman spectroscopy results further confirm that Cu dopant has not altered the wurtzite structure of ZnO. Impedance spectroscopy results reveal that the dielectric constant and dielectric loss have increasing trend with Cu doping. Cu doping has been found to slightly decrease the bactericidal potency of ZnO nanoparticles.
文摘Three-dimensional(3D)bioprinting,an additive manufacturing based technique of biomaterials fabrication,is an innovative and auspicious strategy in medical and pharmaceutical fields.The ability of producing regenerative tissues and organs has made this technology a pioneer to the creation of artificial multi-cellular tissues/organs.A broad variety of biomaterials is currently being utilized in 3D bioprinting as well as multiple techniques employed by researchers.In this review,we demonstrate the most common and novel biomaterials in 3D bioprinting technology further with introducing the related techniques that are commonly taking into account by researchers.In addition,an attempt has been accomplished to hand over the most relevant application of 3D bioprinting techniques such as tissue regeneration,cancer investigations,etc.by presenting the most important works.The main aim of this review paper is to emphasis on strengths and limitations of existence biomaterials and 3D bioprinting techniques in order to carry out a comparison through them.