Surface area,pore properties,synergistic behavior,homogenous dispersion,and interactions between carbon matrix and metal-nanostructures are the key factors for achieving the better performance of carbon-metal based(el...Surface area,pore properties,synergistic behavior,homogenous dispersion,and interactions between carbon matrix and metal-nanostructures are the key factors for achieving the better performance of carbon-metal based(electro)catalysts.However,the traditional hydro-or solvothermal preparation of(electro)catalysts,particularly,bi-or tri-metallic nanostructures anchored graphene(G)or carbon nanotubes(CNTs),often pose to poor metal–support interaction,low synergism,and patchy dispersion.At first,bimetallic flower-like-CuFeS_(2)/NG and cube-like-NiFeS_(2)/NCNTs nanocomposites were prepared by solvothermal method.The resultant bimetallic nanocomposites were employed to derive the 2D-nano-sandwiched Fe_(2)CuNiS_(4)/NGCNTs-SW(electro)catalyst by a very simple and green urea-mediated“mix-heat”method.The desired physicochemical properties of Fe_(2)CuNiS_(4)/NGCNTs-SW such as multiple active sites,strong metal-support interaction,homogenous dispersion and enhanced surface area were confirmed by various microscopic and spectroscopic techniques.To the best of our knowledge,this is the first urea-mediated“mix-heat”method for preparing 2D-nano-sandwiched carbon-metal-based(electro)catalysts.The Fe_(2)CuNiS_(4)/NGCNTs-SW was found to be highly effective for alkaline-mediated oxygen evolution reaction at low onset potential of 284.24 mV,and the stable current density of 10 mA cm^(−2) in 1.0 m KOH for 10 h.Further,the Fe_(2)CuNiS_(4)/NGCNTs-SW demonstrated excellent catalytic activity in the reduction of 4-nitrophenol with good kapp value of 87.71×10^(−2)s^(-1)and excellent reusability over five cycles.Overall,the developed urea-mediated“mix-heat”method is highly efficient for the preparation of metal-nanoarchitectures anchored 2D-nano-sandwiched(electro)catalysts with high synergism,uniform dispersion and excellent metal-support interaction.展开更多
Herein, we report a simple and effective preparation of ultrafine CNFs (u-CNFs) with high surface area via electrospinning of two immiscible polymers [polyacrylonitrile (PAN) and poly(methyl methacry- late) (P...Herein, we report a simple and effective preparation of ultrafine CNFs (u-CNFs) with high surface area via electrospinning of two immiscible polymers [polyacrylonitrile (PAN) and poly(methyl methacry- late) (PMMA)] followed by calcination at high temperature in an inert atmosphere. Various electrospinning conditions were optimized in detail. Four different kinds of PAN/PMMA ratios (10/0, 7:3, 5:5 and 3:7) were chosen and found that the PAN/PMMA ratio of 3:7 (PAN/PMMA-3:7) is the optimum one. BET anal- ysis showed the specific surface area of the u-CNFs-3:7 was 46Z57 m2/g with an excellent pore volume (1.15 cms g-l) and an average pore size (9.48 nm): it is about 25 times higher than the conventional CNFs (c-CNFs). TEM and FE-SEM images confirmed the ultrafine structure of the CNFs with a thinner fiber di- ameter of-50 nm. The graphitic nature and atomic arrangement of the u-CNFs were investigated by Raman and XPS analyses. For the supercapacitor application, unlike the common electrode preparation methods, the u-CNFs-3:7 was used without any activation, chemical or mechanical modifications. The u-CNFs- 3:7 showed a better specific capacitance of 86 Fig in 1 mol/L 1-12S04 when compared to pure CNFs. The excellent physicochemical properties make the u-CNFs-3:7 an alternative choice to the existing CNFs for the supercapacitors.展开更多
Herein, we report a new and simple method for the preparation of metallic copper nanospheres- decorated cellulose nanofiber composite (CuNSsJCNFs). Initially, the cellulose acetate nanofibers (CANFs) were electros...Herein, we report a new and simple method for the preparation of metallic copper nanospheres- decorated cellulose nanofiber composite (CuNSsJCNFs). Initially, the cellulose acetate nanofibers (CANFs) were electrospun followed by deacetylation and anionization to produce functional anionic cellulose nanofibers ff-CNFs). The CuCl2 precursor was deposited on thef-CNFs (CuC12/CNFs) by a simple dipping method. Then the CuCIdCNFs were reduced under vacuum by using aluminum foil to produce the CuNSs/ CNFs. The resultant CuNSs/CNFs composite was characterized by various microscopic and spectroscopic methods. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful functionalization of anionic groups with the CNFs. The field emission scanning electron microscopy (FE-SEM) and transmission electron microscope (TEM) results confirmed the formation of CuNSs on the surface of CNFs. From the scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analysis, the weight percentage of Cu was found to be 23.5 wt%. The successful reduction of CuO to metallic Cu was confirmed by X-ray photoemission spectroscopy (XPS) and X-ray diffraction (XRD) analyses. Mechanism has been proposed for the formation of metallic Cu sphere on CNFs.展开更多
基金supported by JSPS KAKENHI(Grant number 24K15389)S.C.Kim greatly acknowledges the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education of the Republic of Korea(2020R1I1A3052258)for financial support.
文摘Surface area,pore properties,synergistic behavior,homogenous dispersion,and interactions between carbon matrix and metal-nanostructures are the key factors for achieving the better performance of carbon-metal based(electro)catalysts.However,the traditional hydro-or solvothermal preparation of(electro)catalysts,particularly,bi-or tri-metallic nanostructures anchored graphene(G)or carbon nanotubes(CNTs),often pose to poor metal–support interaction,low synergism,and patchy dispersion.At first,bimetallic flower-like-CuFeS_(2)/NG and cube-like-NiFeS_(2)/NCNTs nanocomposites were prepared by solvothermal method.The resultant bimetallic nanocomposites were employed to derive the 2D-nano-sandwiched Fe_(2)CuNiS_(4)/NGCNTs-SW(electro)catalyst by a very simple and green urea-mediated“mix-heat”method.The desired physicochemical properties of Fe_(2)CuNiS_(4)/NGCNTs-SW such as multiple active sites,strong metal-support interaction,homogenous dispersion and enhanced surface area were confirmed by various microscopic and spectroscopic techniques.To the best of our knowledge,this is the first urea-mediated“mix-heat”method for preparing 2D-nano-sandwiched carbon-metal-based(electro)catalysts.The Fe_(2)CuNiS_(4)/NGCNTs-SW was found to be highly effective for alkaline-mediated oxygen evolution reaction at low onset potential of 284.24 mV,and the stable current density of 10 mA cm^(−2) in 1.0 m KOH for 10 h.Further,the Fe_(2)CuNiS_(4)/NGCNTs-SW demonstrated excellent catalytic activity in the reduction of 4-nitrophenol with good kapp value of 87.71×10^(−2)s^(-1)and excellent reusability over five cycles.Overall,the developed urea-mediated“mix-heat”method is highly efficient for the preparation of metal-nanoarchitectures anchored 2D-nano-sandwiched(electro)catalysts with high synergism,uniform dispersion and excellent metal-support interaction.
基金supported by a research fund of Chungnam National University in 2014
文摘Herein, we report a simple and effective preparation of ultrafine CNFs (u-CNFs) with high surface area via electrospinning of two immiscible polymers [polyacrylonitrile (PAN) and poly(methyl methacry- late) (PMMA)] followed by calcination at high temperature in an inert atmosphere. Various electrospinning conditions were optimized in detail. Four different kinds of PAN/PMMA ratios (10/0, 7:3, 5:5 and 3:7) were chosen and found that the PAN/PMMA ratio of 3:7 (PAN/PMMA-3:7) is the optimum one. BET anal- ysis showed the specific surface area of the u-CNFs-3:7 was 46Z57 m2/g with an excellent pore volume (1.15 cms g-l) and an average pore size (9.48 nm): it is about 25 times higher than the conventional CNFs (c-CNFs). TEM and FE-SEM images confirmed the ultrafine structure of the CNFs with a thinner fiber di- ameter of-50 nm. The graphitic nature and atomic arrangement of the u-CNFs were investigated by Raman and XPS analyses. For the supercapacitor application, unlike the common electrode preparation methods, the u-CNFs-3:7 was used without any activation, chemical or mechanical modifications. The u-CNFs- 3:7 showed a better specific capacitance of 86 Fig in 1 mol/L 1-12S04 when compared to pure CNFs. The excellent physicochemical properties make the u-CNFs-3:7 an alternative choice to the existing CNFs for the supercapacitors.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(2014R1A1A3A04049595)
文摘Herein, we report a new and simple method for the preparation of metallic copper nanospheres- decorated cellulose nanofiber composite (CuNSsJCNFs). Initially, the cellulose acetate nanofibers (CANFs) were electrospun followed by deacetylation and anionization to produce functional anionic cellulose nanofibers ff-CNFs). The CuCl2 precursor was deposited on thef-CNFs (CuC12/CNFs) by a simple dipping method. Then the CuCIdCNFs were reduced under vacuum by using aluminum foil to produce the CuNSs/ CNFs. The resultant CuNSs/CNFs composite was characterized by various microscopic and spectroscopic methods. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful functionalization of anionic groups with the CNFs. The field emission scanning electron microscopy (FE-SEM) and transmission electron microscope (TEM) results confirmed the formation of CuNSs on the surface of CNFs. From the scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analysis, the weight percentage of Cu was found to be 23.5 wt%. The successful reduction of CuO to metallic Cu was confirmed by X-ray photoemission spectroscopy (XPS) and X-ray diffraction (XRD) analyses. Mechanism has been proposed for the formation of metallic Cu sphere on CNFs.