This paper demonstrated the fabrication,characterization,datadriven modeling,and practical application of a 1D SnO_(2)nanofiber-based memristor,in which a 1D SnO_(2)active layer wassandwiched between silver(Ag)and alu...This paper demonstrated the fabrication,characterization,datadriven modeling,and practical application of a 1D SnO_(2)nanofiber-based memristor,in which a 1D SnO_(2)active layer wassandwiched between silver(Ag)and aluminum(Al)electrodes.Thisdevice yielded a very high ROFF:RON of~104(ION:IOFF of~105)with an excellent activation slope of 10 mV/dec,low set voltage ofVSET~1.14 V and good repeatability.This paper physically explained the conduction mechanism in the layered SnO_(2)nanofiber-basedmemristor.The conductive network was composed of nanofibersthat play a vital role in the memristive action,since more conductive paths could facilitate the hopping of electron carriers.Energyband structures experimentally extracted with the adoption of ultraviolet photoelectron spectroscopy strongly support the claimsreported in this paper.An machine learning(ML)–assisted,datadriven model of the fabricated memristor was also developedemploying different popular algorithms such as polynomialregression,support vector regression,k nearest neighbors,andartificial neural network(ANN)to model the data of the fabricateddevice.We have proposed two types of ANN models(type I andtype II)algorithms,illustrated with a detailed flowchart,to modelthe fabricated memristor.Benchmarking with standard ML techniques shows that the type II ANN algorithm provides the bestmean absolute percentage error of 0.0175 with a 98%R^(2)score.The proposed data-driven model was further validated with the characterization results of similar new memristors fabricated adoptingthe same fabrication recipe,which gave satisfactory predictions.Lastly,the ANN type II model was applied to design and implementsimple AND&OR logic functionalities adopting the fabricatedmemristors with expected,near-ideal characteristics.展开更多
文摘This paper demonstrated the fabrication,characterization,datadriven modeling,and practical application of a 1D SnO_(2)nanofiber-based memristor,in which a 1D SnO_(2)active layer wassandwiched between silver(Ag)and aluminum(Al)electrodes.Thisdevice yielded a very high ROFF:RON of~104(ION:IOFF of~105)with an excellent activation slope of 10 mV/dec,low set voltage ofVSET~1.14 V and good repeatability.This paper physically explained the conduction mechanism in the layered SnO_(2)nanofiber-basedmemristor.The conductive network was composed of nanofibersthat play a vital role in the memristive action,since more conductive paths could facilitate the hopping of electron carriers.Energyband structures experimentally extracted with the adoption of ultraviolet photoelectron spectroscopy strongly support the claimsreported in this paper.An machine learning(ML)–assisted,datadriven model of the fabricated memristor was also developedemploying different popular algorithms such as polynomialregression,support vector regression,k nearest neighbors,andartificial neural network(ANN)to model the data of the fabricateddevice.We have proposed two types of ANN models(type I andtype II)algorithms,illustrated with a detailed flowchart,to modelthe fabricated memristor.Benchmarking with standard ML techniques shows that the type II ANN algorithm provides the bestmean absolute percentage error of 0.0175 with a 98%R^(2)score.The proposed data-driven model was further validated with the characterization results of similar new memristors fabricated adoptingthe same fabrication recipe,which gave satisfactory predictions.Lastly,the ANN type II model was applied to design and implementsimple AND&OR logic functionalities adopting the fabricatedmemristors with expected,near-ideal characteristics.