Electrochemical energy storage devices(EESs)play a crucial role for the construction of sustainable energy storage system from the point of generation to the end user due to the intermittent nature of renewable source...Electrochemical energy storage devices(EESs)play a crucial role for the construction of sustainable energy storage system from the point of generation to the end user due to the intermittent nature of renewable sources.Additionally,to meet the demand for next-generation electronic applications,optimizing the energy and power densities of EESs with long cycle life is the crucial factor.Great e orts have been devoted towards the search for new materials,to augment the overall performance of the EESs.Although there are a lot of ongoing researches in this field,the performance does not meet up to the level of commercialization.A further understanding of the charge storage mechanism and development of new electrode materials are highly required.The present review explains the overview of recent progress in supercapattery devices with reference to their various aspects.The di erent charge storage mechanisms and the multiple factors involved in the performance of the supercapattery are described in detail.Moreover,recent advancements in this supercapattery research and its electrochemical performances are reviewed.Finally,the challenges and possible future developments in this field are summarized.展开更多
基金the Technology Mission Division(TMD),Department of Science and Technology(DST),New Delhi,India,for a research Grant under Materials for Energy Storage(MES)Scheme No.DST/TMD/MES/2K17/29International Bilateral Cooperation Division(TMD),Department of Science and Technology(DST),New Delhi,India for a research grant under Indo-German Project scheme no.INT/FRG/DAAD/P-09/2018Department of Science and Technology for the financial assistance under DST-Inspire fellowship scheme(IF170869).
文摘Electrochemical energy storage devices(EESs)play a crucial role for the construction of sustainable energy storage system from the point of generation to the end user due to the intermittent nature of renewable sources.Additionally,to meet the demand for next-generation electronic applications,optimizing the energy and power densities of EESs with long cycle life is the crucial factor.Great e orts have been devoted towards the search for new materials,to augment the overall performance of the EESs.Although there are a lot of ongoing researches in this field,the performance does not meet up to the level of commercialization.A further understanding of the charge storage mechanism and development of new electrode materials are highly required.The present review explains the overview of recent progress in supercapattery devices with reference to their various aspects.The di erent charge storage mechanisms and the multiple factors involved in the performance of the supercapattery are described in detail.Moreover,recent advancements in this supercapattery research and its electrochemical performances are reviewed.Finally,the challenges and possible future developments in this field are summarized.