Surgical meshes have been employed in the management of a variety of pathological conditions including hernia,pelvic floor dysfunctions,periodontal guided bone regeneration,wound healing and more recently for breast p...Surgical meshes have been employed in the management of a variety of pathological conditions including hernia,pelvic floor dysfunctions,periodontal guided bone regeneration,wound healing and more recently for breast plastic surgery after mastectomy.These common pathologies affect a wide portion of the worldwide population;therefore,an effective and enhanced treatment is crucial to ameliorate patients’living conditions both from medical and aesthetic points of view.At present,non-absorbable synthetic polymers are the most widely used class of biomaterials for the manufacturing of mesh implants for hernia,pelvic floor dysfunctions and guided bone regeneration,with polypropylene and poly tetrafluoroethylene being the most common.Biological prostheses,such as surgical grafts,have been employed mainly for breast plastic surgery and wound healing applications.Despite the advantages of mesh implants to the treatment of these conditions,there are still many drawbacks,mainly related to the arising of a huge number of post-operative complications,among which infections are the most common.Developing a mesh that could appropriately integrate with the native tissue,promote its healing and constructive remodelling,is the key aim of ongoing research in the area of surgical mesh implants.To this end,the adoption of new biomaterials including absorbable and natural polymers,the use of drugs and advanced manufacturing technologies,such as 3D printing and electrospinning,are under investigation to address the previously mentioned challenges and improve the outcomes of future clinical practice.The aim of this work is to review the key advantages and disadvantages related to the use of surgical meshes,the main issues characterizing each clinical procedure and the future directions in terms of both novel manufacturing technologies and latest regulatory considerations.展开更多
Diamond-like carbon (DLC) coatings are extremely useful for creating biocompatible surfaces on medical implants. DLC and silicon doped DLC synthesised on silicon wafer substrate by using plasma enhanced chemical vapou...Diamond-like carbon (DLC) coatings are extremely useful for creating biocompatible surfaces on medical implants. DLC and silicon doped DLC synthesised on silicon wafer substrate by using plasma enhanced chemical vapour deposition (PECVD). The effects of surface morphology on the interaction of HSA with doped and undoped DLC films have been investigated. The chemical composition of the surface before and after adsorption was analysed using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR). Results showed that silicon incorporation DLC tends to increase of sp3/sp2 hybridization ratio by decreasing sp2 hybridized carbon bonding configurations. Following exposure to solutions containing (0.250 μg/ml) HSA, the results indicated that significant changes in the C, N and O levels on the surfaces with reducing of the Si2p band at 100 eV. From FTIR spectrum, the peaks occur the following functional groups were assigned as amide I and II groups at 1650 cm-1 and 1580 cm-1. Both XPS and FTIR spectroscopy confirm that HSA was bound onto the surfaces of the DLC and Si-DLC films via interaction of ionized carboxyl groups and the amino group did not play a significant role in the adsorption of protein. These results from peak intensity show that an adsorbed layer of HSA is higher at high level (19%) silicon doping. Therefore doping of DLC may provide an approach to controlling the protein adsorption.展开更多
文摘Surgical meshes have been employed in the management of a variety of pathological conditions including hernia,pelvic floor dysfunctions,periodontal guided bone regeneration,wound healing and more recently for breast plastic surgery after mastectomy.These common pathologies affect a wide portion of the worldwide population;therefore,an effective and enhanced treatment is crucial to ameliorate patients’living conditions both from medical and aesthetic points of view.At present,non-absorbable synthetic polymers are the most widely used class of biomaterials for the manufacturing of mesh implants for hernia,pelvic floor dysfunctions and guided bone regeneration,with polypropylene and poly tetrafluoroethylene being the most common.Biological prostheses,such as surgical grafts,have been employed mainly for breast plastic surgery and wound healing applications.Despite the advantages of mesh implants to the treatment of these conditions,there are still many drawbacks,mainly related to the arising of a huge number of post-operative complications,among which infections are the most common.Developing a mesh that could appropriately integrate with the native tissue,promote its healing and constructive remodelling,is the key aim of ongoing research in the area of surgical mesh implants.To this end,the adoption of new biomaterials including absorbable and natural polymers,the use of drugs and advanced manufacturing technologies,such as 3D printing and electrospinning,are under investigation to address the previously mentioned challenges and improve the outcomes of future clinical practice.The aim of this work is to review the key advantages and disadvantages related to the use of surgical meshes,the main issues characterizing each clinical procedure and the future directions in terms of both novel manufacturing technologies and latest regulatory considerations.
文摘Diamond-like carbon (DLC) coatings are extremely useful for creating biocompatible surfaces on medical implants. DLC and silicon doped DLC synthesised on silicon wafer substrate by using plasma enhanced chemical vapour deposition (PECVD). The effects of surface morphology on the interaction of HSA with doped and undoped DLC films have been investigated. The chemical composition of the surface before and after adsorption was analysed using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR). Results showed that silicon incorporation DLC tends to increase of sp3/sp2 hybridization ratio by decreasing sp2 hybridized carbon bonding configurations. Following exposure to solutions containing (0.250 μg/ml) HSA, the results indicated that significant changes in the C, N and O levels on the surfaces with reducing of the Si2p band at 100 eV. From FTIR spectrum, the peaks occur the following functional groups were assigned as amide I and II groups at 1650 cm-1 and 1580 cm-1. Both XPS and FTIR spectroscopy confirm that HSA was bound onto the surfaces of the DLC and Si-DLC films via interaction of ionized carboxyl groups and the amino group did not play a significant role in the adsorption of protein. These results from peak intensity show that an adsorbed layer of HSA is higher at high level (19%) silicon doping. Therefore doping of DLC may provide an approach to controlling the protein adsorption.