Purpose:.To evaluate the surgical effect of levator muscle shortening and levator aponeurosis tucking in treating minimal and moderate congenital blepharoptosis.Methods:.Clinical data of 28 patients(40 eyes) diagnosed...Purpose:.To evaluate the surgical effect of levator muscle shortening and levator aponeurosis tucking in treating minimal and moderate congenital blepharoptosis.Methods:.Clinical data of 28 patients(40 eyes) diagnosed with mide and moderate congenital blepharoptosis at our institution were retrospectively analyzed. Postoperative efficacy was evaluated and statistically compared between these two techniques.Results:.During 14 months follow-up,.16 eyes with ptosis undergoing levator muscle shortening were treated,.3 with undercorrection of ptosis and 1 with overcorrection of ptosis.In patients receiving levator aponeurosis tucking,.16 eyes were cured and 4 with undercorrection of ptosis.Conclusion:.Both levator muscle shortening and levator aponeurosis tucking are safe and efficacious for correcting minimal and moderate congenital blepharoptosis.展开更多
Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly u...Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly understood. This study examined the protective factors affecting working memory in heat shock transcription factor 1 gene knockout mice. The results indicated that the number of correct T maze alternations decreased following mild chronic psychological stress in knockout mice. This change was accompanied by a decrease in neurogenesis and an increase in neuronal apoptosis in the hippocampal dentate gyrus. The number of correct T maze alternations was positively correlated with neurogenesis in hippocampal dentate gyrus, and negatively correlated with neuronal apoptosis. In wild type mice, no significant difference was detected in the number of correct T maze alternations or neuronal apoptosis in hippocampal dentate gyrus. These results indicate that the heat shock factor 1 gene has an endogenous protective role in working memory during mild chronic psychological stress associated with dentate gyrus neuronal apoptosis Moreover, dentate gyrus neurogenesis appears to participate in the protective mechanism.展开更多
A lack of myoelectric sources after limb amputation is a critical challenge in the control of multifunctional motorized prostheses. To reconstruct myoelectric sources physiologically related to lost limbs, a newly pro...A lack of myoelectric sources after limb amputation is a critical challenge in the control of multifunctional motorized prostheses. To reconstruct myoelectric sources physiologically related to lost limbs, a newly proposed neural-function construc- tion method, targeted muscle reinnervation (TMR), appears promising. Recent advances in the TMR technique suggest that TMR could provide additional motor command information for the control of multifimctional myoelectric prostheses. However, little is known about the nature of the physiological functional recovery of the reinnervated muscles. More understanding of the under- lying mechanism of TMR could help us fine tune the technique to maximize its capability to achieve a much higher performance in the control of multifunctional prostheses. In this study, rats were used as an animal model for TMR surgery involving transferring a median nerve into the pectoralis major, which served as the target muscle. Intramuscular myoelectric signals reconstructed following TMR were recorded by implanted wire electrodes and analyzed to explore the nature of the neural-fimction recon- struction achieved by reinnervation of targeted muscles. Our results showed that the active myoelectric signal reconstructed in the targeted muscle was acquired one week after TMR surgery, and its amplitude gradually became stronger over time. These pre- liminary results from rats may serve as a basis for exploring the mechanism of neural-function reconstruction by the TMR tech- nique in human subjects.展开更多
文摘Purpose:.To evaluate the surgical effect of levator muscle shortening and levator aponeurosis tucking in treating minimal and moderate congenital blepharoptosis.Methods:.Clinical data of 28 patients(40 eyes) diagnosed with mide and moderate congenital blepharoptosis at our institution were retrospectively analyzed. Postoperative efficacy was evaluated and statistically compared between these two techniques.Results:.During 14 months follow-up,.16 eyes with ptosis undergoing levator muscle shortening were treated,.3 with undercorrection of ptosis and 1 with overcorrection of ptosis.In patients receiving levator aponeurosis tucking,.16 eyes were cured and 4 with undercorrection of ptosis.Conclusion:.Both levator muscle shortening and levator aponeurosis tucking are safe and efficacious for correcting minimal and moderate congenital blepharoptosis.
基金the National Natural Science Foundation of China, No. 30170326
文摘Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly understood. This study examined the protective factors affecting working memory in heat shock transcription factor 1 gene knockout mice. The results indicated that the number of correct T maze alternations decreased following mild chronic psychological stress in knockout mice. This change was accompanied by a decrease in neurogenesis and an increase in neuronal apoptosis in the hippocampal dentate gyrus. The number of correct T maze alternations was positively correlated with neurogenesis in hippocampal dentate gyrus, and negatively correlated with neuronal apoptosis. In wild type mice, no significant difference was detected in the number of correct T maze alternations or neuronal apoptosis in hippocampal dentate gyrus. These results indicate that the heat shock factor 1 gene has an endogenous protective role in working memory during mild chronic psychological stress associated with dentate gyrus neuronal apoptosis Moreover, dentate gyrus neurogenesis appears to participate in the protective mechanism.
基金Project supported by the National Basic Research Program(973)of China(No.2013CB329505)the National Natural Science Foundation of China(Nos.61135004 and 61201114)+2 种基金the China Postdoctoral Science Foundation(No.2013M541046)the Shenzhen Governmental Basic Research Grant(No.JCYJ20120617115010496)the State Key Laboratory of Bioelectronics of Southeast University
文摘A lack of myoelectric sources after limb amputation is a critical challenge in the control of multifunctional motorized prostheses. To reconstruct myoelectric sources physiologically related to lost limbs, a newly proposed neural-function construc- tion method, targeted muscle reinnervation (TMR), appears promising. Recent advances in the TMR technique suggest that TMR could provide additional motor command information for the control of multifimctional myoelectric prostheses. However, little is known about the nature of the physiological functional recovery of the reinnervated muscles. More understanding of the under- lying mechanism of TMR could help us fine tune the technique to maximize its capability to achieve a much higher performance in the control of multifunctional prostheses. In this study, rats were used as an animal model for TMR surgery involving transferring a median nerve into the pectoralis major, which served as the target muscle. Intramuscular myoelectric signals reconstructed following TMR were recorded by implanted wire electrodes and analyzed to explore the nature of the neural-fimction recon- struction achieved by reinnervation of targeted muscles. Our results showed that the active myoelectric signal reconstructed in the targeted muscle was acquired one week after TMR surgery, and its amplitude gradually became stronger over time. These pre- liminary results from rats may serve as a basis for exploring the mechanism of neural-function reconstruction by the TMR tech- nique in human subjects.