期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of Different Planting Years on Physicochemical Properties and Enzyme Activities in Soil of Rice-Cherry Tomato Rotation
1
作者 Xiao Deng Chunyuan Wu +2 位作者 Yi Li Huadong Tan Jiancheng Su 《Open Journal of Ecology》 2023年第6期334-344,共11页
Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomat... Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomato rotation for one year (1a), three years (3a), five years (5a), seven years (7a) and ten years (10a), respectively. The major objective was to analyze the optimal rotation years of rice-cherry tomato from soil perspective, so as to provide theoretical basis for effectively avoiding continuous cropping obstacles of cherry tomato via studying the response characteristics of soil physicochemical properties, nutrient contents and enzyme activities to planting years of rice-cherry tomato rotation system. The results were as follows: 1) Soil pH value was increased year by year during 1a to 5a, reached the highest value 5.32 at 5a. However, soil acidity was sharply enhanced during 7a to 10a (P P •kg<sup>-1</sup> at 5a. 3) The content of soil available phosphorus was increased year by year with increasing of crop rotation years, and increased by 110% to 173% during 3a to 10a (P P P < 0.05). In conclusion, long-term single rotation pattern of rice-cherry tomato would aggravate soil acidification, prompt soil nutrient imbalance and reduce soil enzyme activity. 5a to 7a would be the appropriate rotation period for rice-cherry tomato, or else it would reduce soil quality, resulting in a new continuous cropping obstacle of cherry tomato. 展开更多
关键词 Rice-Cherry Tomato Rotation Planting Years SOIL Physicochemical Properties Enzyme Activity
下载PDF
Patterns of crop-specific fertilizer-nitrogen losses and opportunities for sustainable mitigation:A quantitative overview of 15N-tracing studies
2
作者 Cong Xu Hanshen Zhu +5 位作者 Haokuang Liu Cheng Ji Jie Yuan Guanlin Li Jidong Wang Yongchun Zhang 《Soil Ecology Letters》 CSCD 2024年第2期71-81,共11页
Pattern and mitigation potential of crop-specific fertilizer-N losses were assessed.China showed high fertilizer-N losses due to high N application rates and low SOC.MAP,SOC,and soil pH are key parameters affecting fe... Pattern and mitigation potential of crop-specific fertilizer-N losses were assessed.China showed high fertilizer-N losses due to high N application rates and low SOC.MAP,SOC,and soil pH are key parameters affecting fertilizer-N losses.At a given application rate,soils with higher SOC have lower fertilizer-N losses.Optimal N rate combined with SOC improvement could cut 34.8%-59.6%of N losses. 展开更多
关键词 fertilizer-nitrogen loss crop-specific 15N tracing soil organic carbon meta-analysis
原文传递
Warming intensified the effects of nitrogen addition on N_(2)O emissions from alpine meadow in the northern Qinghai-Tibet Plateau
3
作者 Ming-Jie LI Yi-Qing GE +5 位作者 Hasbagan GANJURJAV Guo-Zheng HU Hong-Bao WU Jun YAN Shi-Cheng HE Qing-Zhu GAO 《Advances in Climate Change Research》 SCIE CSCD 2024年第1期101-112,共12页
Warming and nitrogen(N)addition may impact soil nitrous oxide(N_(2)O)emissions,but the relationship between plant community composition and soil microbial activities remains unclear.For a two-year field study in the Q... Warming and nitrogen(N)addition may impact soil nitrous oxide(N_(2)O)emissions,but the relationship between plant community composition and soil microbial activities remains unclear.For a two-year field study in the Qinghai-Tibet Plateau,open-top chambers were used to quantify the effects of warming,N-addition,and their interactions on N_(2)O emissions.We found that the N-addition greatly increased N_(2)O emissions by 77.4%in 2018 when compared to the control group.In contrast,warming showed little effect on N_(2)0 emissions but did increase the activity of enzymes associated with soil nitrification and denitrification.A combined effect of warming and N-addition of resulted in 208.6%(2018)and 90.8%(2019)increase in N_(2)0 emissions,respectively,compared to the individual treatments of warming or N-addition.Global warming in alpine meadows is causally linked to increased legume biomass which is further intensified with the N-addition.Intensified legume biomass(p<0.05),soil moisture(p<0.001)and enzyme activity(p<0.001)had a positive effect on N_(2)0 emissions,while diminished microbial carbon/nitrogen(MBC/MBN)(p<0.05)correlated with reduced N_(2)O emissions.Final results indicated that N-addition has a positive effect on N_(2)O emissions,and the addition of warming further intensifies this effect.The increased dominance of legumes and microbial N content contributes to this effect.These outcomes suggest that warming and atmospheric N deposition can stimulate N_(2)O emissions of alpine meadows inthefuture. 展开更多
关键词 Alpine meadow Community composition Nitrogen addition Nitrous oxide flux Qinghai-Tibet Plateau WARMING
原文传递
Changes of microbiome in response to sugars in a wilt pathogen-infested soil
4
作者 Gaidi Ren Guangfei Wang +2 位作者 Dejie Guo Chao Lu Yan Ma 《Soil Ecology Letters》 CAS CSCD 2023年第1期46-65,共20页
Sugars are frequently and abundantly found in root exudates,but influence of specific sugars on the fate of soil-borne pathogens,microbiome structure,and particularly microbial interactions are not well understood.A 4... Sugars are frequently and abundantly found in root exudates,but influence of specific sugars on the fate of soil-borne pathogens,microbiome structure,and particularly microbial interactions are not well understood.A 42-day of microcosm incubation was conducted with two soils:a natural watermelon Fusarium wilt pathogen(i.e.,Fusarium oxysporum f.sp.niveum(FON))-infested soil(Low-FON soil)and the soil further receiving the wilt pathogen inocula(High-FON soil).Both soils were supplemented with four simple sugars before incubation.The results show that,in both soils,FON was enriched by all sugars although co-living with tremendously diverse microbes;and bacterial richness,evenness,and diversity were decreased and bacterial community structure was changed by all sugars.Bacterial richness and evenness were negatively correlated with FON quantity in both Low-FON and High-FON soils,indicating that FON may tend to live in soil with low alpha-diversity.In both Low-FON and High-FON soils,the sugar-spiked networks had more links,higher density,larger modules,and shorter harmonic geodesic distance,suggesting greater potentials for microbial interaction and niche-sharing.The positive links between some of the keystone taxa and FON indicates that these keystone taxa may have promoted FON.This may be one of reasons why FON could proliferate vigorously after sugar supplementation. 展开更多
关键词 Root exudate Sugar Fusarium oxysporum f.sp.niveum Microbial community structure Molecular ecological network Keystone taxa
原文传递
Unraveling natural aging-induced properties change of sludge-derived hydrochar and enhanced cadmium sorption site heterogeneity
5
作者 Bingyu Wang Cenyao Shang +7 位作者 Huifang Xie Haijun Sun Qiang Zhang Lihong Xue Filip M.G.Tack Deyi Hou Yanfang Feng Jörg Rinklebe 《Biochar》 SCIE 2022年第1期615-634,共20页
Hydrochar has potential applications in soil improvement and heavy metal remediation.Hydrochar would undergo the process of aging when introduced into the soil,altering its properties.However,recent studies have focus... Hydrochar has potential applications in soil improvement and heavy metal remediation.Hydrochar would undergo the process of aging when introduced into the soil,altering its properties.However,recent studies have focused mainly on the artificial aging of hydrochar,which could not reveal the cumulative effect of multiple environmental factors.Therefore,the periodical monitoring of the property and sorption behavior of hydrochar after amending soils is necessary to better understand the multifaceted mechanisms associated with the natural aging of hydrochar.This study selected the sludge-derived hydrochar(SLHC)as a typical hydrochar and applied a 16-month rice-wheat-rice rotation to mimic the natural aging of hydrochar,focusing on changing properties and cadmium(Cd)sorption and literature contrast between aging strategies and biochar types.The porosity,O abundance,and ash content of 16-month aged SLHC increased by 37%,47%,and 8.5%,respectively,facilitating Cd sorption due to surface complexation,pore sorption,and precipitation.The sorption percentage of Cd to SLHC was in the range of 11-14%for SLHC-A0 and increased to 17-31%for SLHC-A4 and 20-32%for SLHC-A16 after natural aging.The natural aging of SLHC induced by ash content played an essential role in Cd sorption site heterogeneity.Linear regression analysis showed that aging strategies on sorption behavior significantly differed between biochars.Thus,studies involving natural aging with multiple environmental factors are preferred over those involving chemical or biological aging.Future studies should continue to explore the mechanisms of natural aging-induced heavy metal sorption between hydrochar and pyrochar.These results improve insights to appraise the potential of SLHC as soil amendments to alleviate the adverse effects of heavy metal contamination and provide an essential basis for researchers and staff in soil management and environmental prevention. 展开更多
关键词 Sludge-derived hydrochar Hydrothermal carbonization Natural aging Physicochemical properties Sorption behavior Cadmium
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部