Chemosensory proteins(CSPs)are important molecular components of the insect olfactory system,which are involved in capturing,binding,and transporting hydrophobic odour molecules across the sensillum in sensillar lymph...Chemosensory proteins(CSPs)are important molecular components of the insect olfactory system,which are involved in capturing,binding,and transporting hydrophobic odour molecules across the sensillum in sensillar lymph in regulating insect behavior.This protein family(CSPs)is also involved in many other systems that are not linked to olfactory receptors in olfactory sensilla.The brown planthopper(BPH)is a monophagous pest of rice that causes damage by sucking phloem sap and transmitting a number of diseases caused by viruses.In this study,fluorescence competitive binding assay and fluorescence quenching assay at acidic p H were performed as well as homology modelling to describe the binding affinity of Nlug CSP10.Fluorescence competitive binding assay(FCBA)demonstrated that Nlug CSP10 bound strongly to nonadecane,farnesene,and 2-tridecanone at acidic p H.The results of FCBA indicated that Nlug CSP10 bound different ligands at the physiological p H(5.0)of the bulk sensillum lymph.Fluorescence quenching assay demonstrated that Nlug CSP10 generated a stable complex with 2-tridecanone,while two ligands nonadecane and farnesene collided due to molecular collisions.The interaction of selected ligands with the modelled structure of Nlug CSP10 was also analyzed,which found the key amino acids(Gln23,Gln24,Gln25,Asn27,Met33,Ser34,Ile35,Tyr36,Asn42,Met43,Val45,Asn46,Asn93,Arg96,Ala97,Lys99,and Ala100)in Nlug CSP10 that were involved in binding of volatile compounds.The present study contributes to the binding profile of Nlug CSP10 that promotes the development of behaviorally active ligands based on BPH olfactory system.展开更多
Linking similar proteins structurally is a challenging task that may help in finding the novel members of a protein family. In this respect, identification of conserved sequence can facilitate understanding and classi...Linking similar proteins structurally is a challenging task that may help in finding the novel members of a protein family. In this respect, identification of conserved sequence can facilitate understanding and classifying the exact role of proteins. However, the exact role of these conserved elements cannot be elucidated without structural and physiochemical information. In this work, we present a novel desktop application MotViz designed for searching and analyzing the conserved sequence segments within protein structure. With MotViz, the user can extract a complete list of sequence motifs from loaded 3D structures, annotate the motifs structurally and analyze their physiochemical properties. The conservation value calculated for an individual motif can be visualized graphically. To check the efficiency, predicted motifs from the data sets of 9 protein families were analyzed and Mot^z algorithm was more efficient in comparison to other online motif prediction tools. Furthermore, a database was also integrated for storing, retrieving and performing the detailed functional annotation studies. In summary, MotViz effectively predicts motifs with high sensitivity and simultaneously visualizes them into 3D strucures. Moreover, Mot- V/z is user-friendly with optimized graphical parameters and better processing speed due to the inclusion of a database at the back end. MotViz is available at http://www.fi-pk.corn/motviz.html.展开更多
Biological databases serve as a global fundamental infrastructure for the worldwide scientific community,which dramatically aid the transformation of big data into knowledge discovery and drive significant innovations...Biological databases serve as a global fundamental infrastructure for the worldwide scientific community,which dramatically aid the transformation of big data into knowledge discovery and drive significant innovations in a wide range of research fields.Given the rapid data production,biological databases continue to increase in size and importance.To build a catalog of worldwide biological databases,we curate a total of 5825 biological databases from 8931 publications,which are geographically distributed in 72 countries/regions and developed by 1975 institutions(as of September 20,2022).We further devise a z-index,a novel index to characterize the scientific impact of a database,and rank all these biological databases as well as their hosting institutions and countries in terms of citation and z-index.Consequently,we present a series of statistics and trends of worldwide biological databases,yielding a global perspective to better understand their status and impact for life and health sciences.An up-to-date catalog of worldwide biological databases,as well as their curated meta-information and derived statistics,is publicly available at Database Commons(https://ngdc.cncb.ac.cn/databasecommons/).展开更多
COVID-19 has swept globally and Pakistan is no exception.To investigate the initial introductions and transmissions of the SARS-CoV-2 in Pakistan,we performed the largest genomic epidemiology study of COVID-19 in Paki...COVID-19 has swept globally and Pakistan is no exception.To investigate the initial introductions and transmissions of the SARS-CoV-2 in Pakistan,we performed the largest genomic epidemiology study of COVID-19 in Pakistan and generated 150 complete SARS-CoV-2 genome sequences from samples collected from March 16 to June 1,2020.We identified a total of 347 mutated positions,31 of which were over-represented in Pakistan.Meanwhile,we found over 1000 intra-host single-nucleotide variants(iSNVs).Several of them occurred concurrently,indicating possible interactions among them or coevolution.Some of the high-frequency iSNVs in Pakistan were not observed in the global population,suggesting strong purifying selections.The genomic epidemiology revealed five distinctive spreading clusters.The largest cluster consisted of 74 viruses which were derived from different geographic locations of Pakistan and formed a deep hierarchical structure,indicating an extensive and persistent nation-wide transmission of the virus that was probably attributed to a signature mutation(G8371T in ORF1ab)of this cluster.Furthermore,28 putative international introductions were identified,several of which are consistent with the epidemiological investigations.In all,this study has inferred the possible pathways of introductions and transmissions of SARS-CoV-2 in Pakistan,which could aid ongoing and future viral surveillance and COVID-19 control.展开更多
基金supported and funded by the National Key Research and Development Program of China(2017YFE0113900)the Special Technical Innovation of Hubei Province,China(2017ABA146)。
文摘Chemosensory proteins(CSPs)are important molecular components of the insect olfactory system,which are involved in capturing,binding,and transporting hydrophobic odour molecules across the sensillum in sensillar lymph in regulating insect behavior.This protein family(CSPs)is also involved in many other systems that are not linked to olfactory receptors in olfactory sensilla.The brown planthopper(BPH)is a monophagous pest of rice that causes damage by sucking phloem sap and transmitting a number of diseases caused by viruses.In this study,fluorescence competitive binding assay and fluorescence quenching assay at acidic p H were performed as well as homology modelling to describe the binding affinity of Nlug CSP10.Fluorescence competitive binding assay(FCBA)demonstrated that Nlug CSP10 bound strongly to nonadecane,farnesene,and 2-tridecanone at acidic p H.The results of FCBA indicated that Nlug CSP10 bound different ligands at the physiological p H(5.0)of the bulk sensillum lymph.Fluorescence quenching assay demonstrated that Nlug CSP10 generated a stable complex with 2-tridecanone,while two ligands nonadecane and farnesene collided due to molecular collisions.The interaction of selected ligands with the modelled structure of Nlug CSP10 was also analyzed,which found the key amino acids(Gln23,Gln24,Gln25,Asn27,Met33,Ser34,Ile35,Tyr36,Asn42,Met43,Val45,Asn46,Asn93,Arg96,Ala97,Lys99,and Ala100)in Nlug CSP10 that were involved in binding of volatile compounds.The present study contributes to the binding profile of Nlug CSP10 that promotes the development of behaviorally active ligands based on BPH olfactory system.
基金supported by Higher Education Commission, Pakistan (Grants No. 20-1493/R&D/09)
文摘Linking similar proteins structurally is a challenging task that may help in finding the novel members of a protein family. In this respect, identification of conserved sequence can facilitate understanding and classifying the exact role of proteins. However, the exact role of these conserved elements cannot be elucidated without structural and physiochemical information. In this work, we present a novel desktop application MotViz designed for searching and analyzing the conserved sequence segments within protein structure. With MotViz, the user can extract a complete list of sequence motifs from loaded 3D structures, annotate the motifs structurally and analyze their physiochemical properties. The conservation value calculated for an individual motif can be visualized graphically. To check the efficiency, predicted motifs from the data sets of 9 protein families were analyzed and Mot^z algorithm was more efficient in comparison to other online motif prediction tools. Furthermore, a database was also integrated for storing, retrieving and performing the detailed functional annotation studies. In summary, MotViz effectively predicts motifs with high sensitivity and simultaneously visualizes them into 3D strucures. Moreover, Mot- V/z is user-friendly with optimized graphical parameters and better processing speed due to the inclusion of a database at the back end. MotViz is available at http://www.fi-pk.corn/motviz.html.
基金supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA19090116 and XDA19050302)the National Natural Science Foundation of China(Grant Nos.31871328 and 32030021)+2 种基金the Professional Association of the Alliance of International Science Organizations(Grant No.ANSO-PA-2020-07)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2019104)the International Partnership Program of the Chinese Academy of Sciences(Grant No.153F11KYSB20160008).
文摘Biological databases serve as a global fundamental infrastructure for the worldwide scientific community,which dramatically aid the transformation of big data into knowledge discovery and drive significant innovations in a wide range of research fields.Given the rapid data production,biological databases continue to increase in size and importance.To build a catalog of worldwide biological databases,we curate a total of 5825 biological databases from 8931 publications,which are geographically distributed in 72 countries/regions and developed by 1975 institutions(as of September 20,2022).We further devise a z-index,a novel index to characterize the scientific impact of a database,and rank all these biological databases as well as their hosting institutions and countries in terms of citation and z-index.Consequently,we present a series of statistics and trends of worldwide biological databases,yielding a global perspective to better understand their status and impact for life and health sciences.An up-to-date catalog of worldwide biological databases,as well as their curated meta-information and derived statistics,is publicly available at Database Commons(https://ngdc.cncb.ac.cn/databasecommons/).
基金supported by grants from the National Key R&D Program of China(Grant Nos.2021YFC0863300,2020YFC0848900,and 2016YFE0206600)the National Natural Science Foundation of China(Grant No.82161148009)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences,China(Grant Nos.XDA19090116 and XDB38060100)the Open Biodiversity and Health Big Data Programme of International Union of Biological Sciences,International Partnership Program of Chinese Academy of Sciences(Grant No.153F11KYSB20160008)the Professional Association of the Alliance of International Science Organizations(Grant No.ANSO-PA-2020-07)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2017141)。
文摘COVID-19 has swept globally and Pakistan is no exception.To investigate the initial introductions and transmissions of the SARS-CoV-2 in Pakistan,we performed the largest genomic epidemiology study of COVID-19 in Pakistan and generated 150 complete SARS-CoV-2 genome sequences from samples collected from March 16 to June 1,2020.We identified a total of 347 mutated positions,31 of which were over-represented in Pakistan.Meanwhile,we found over 1000 intra-host single-nucleotide variants(iSNVs).Several of them occurred concurrently,indicating possible interactions among them or coevolution.Some of the high-frequency iSNVs in Pakistan were not observed in the global population,suggesting strong purifying selections.The genomic epidemiology revealed five distinctive spreading clusters.The largest cluster consisted of 74 viruses which were derived from different geographic locations of Pakistan and formed a deep hierarchical structure,indicating an extensive and persistent nation-wide transmission of the virus that was probably attributed to a signature mutation(G8371T in ORF1ab)of this cluster.Furthermore,28 putative international introductions were identified,several of which are consistent with the epidemiological investigations.In all,this study has inferred the possible pathways of introductions and transmissions of SARS-CoV-2 in Pakistan,which could aid ongoing and future viral surveillance and COVID-19 control.