We designed a sector bowtie nanoantenna integrated with a rectifier (Au-TiOx-Ti diode) for collect- ing infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at inf...We designed a sector bowtie nanoantenna integrated with a rectifier (Au-TiOx-Ti diode) for collect- ing infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at infrared frequencies (5-30 μm) using three-dimensional frequency-domain electro- magnetic field calculation software based on the finite element method. The simulation results indi- cate that the resonance wavelength and local field enhancement are greatly affected by the shape and size of the bowtie nanoantenna, as well as the relative permittivity and conductivity of the dielectric layer. The output current of the rectified nano-rectenna is substantially at nanoampere magnitude with an electric field intensity of 1 V/m. Moreover, the power conversion efficiency for devices with three different substrates illustrates that a substrate with a larger refractive index yields a higher efficiency and longer infrared response wavelength. Consequently, the optimized structure can pro- vide theoretical support for the design of novel optical rectennas and fabrication of optoelectronic devices.展开更多
As their potential applications in various electronic devices increase, the preparation of anisotropic conjugated polymer nanostructures are highly desirable. This paper presents a review of the literature and our rec...As their potential applications in various electronic devices increase, the preparation of anisotropic conjugated polymer nanostructures are highly desirable. This paper presents a review of the literature and our recent results on the self-assembly of one-, two- and three-dimensional anisotropic nanostructures using conjugated polymers as building blocks, including the formation of one-dimensional (1D) nanofibers and nanotubes, two-dimensional (2D) nanoribbons and nanosheets, and three-dimensional (3D) superstructures. The mechanisms guiding the formation of various nanostructures are analyzed by a cooperative effect of - stacking interaction and other noncovalent interactions.展开更多
A series of thiophene-based conjugated microporous polymers (ThPOPs) have been synthesized on the basis of ferric chloride-catalyzed oxidative coupling polymerization of muRi-thienyl monomers. The structures of ThPO...A series of thiophene-based conjugated microporous polymers (ThPOPs) have been synthesized on the basis of ferric chloride-catalyzed oxidative coupling polymerization of muRi-thienyl monomers. The structures of ThPOPs were confirmed via solid-state t3C CP/MAS NMR spectroscopy and Fourier-transform infrared spectroscopy. The ThPOPs possess high porosities and their high Brunauer-Emmett-Teller specific surface area results vary between 350 and 1320mZg . The presence of abundant ultra-micronores at 0.50-0.63 nm allows ThPOPs efficient gas (carbon dioxide, methane, and hydrogen) adsorption.展开更多
The peptide assembly structures of polyglutamine (PolyQ) have been studied by using scanning tunneling microscopy (STM) with high spatial resolution in ambient conditions. 4,4'-Bipyridyl (4Bpy) was introduced i...The peptide assembly structures of polyglutamine (PolyQ) have been studied by using scanning tunneling microscopy (STM) with high spatial resolution in ambient conditions. 4,4'-Bipyridyl (4Bpy) was introduced into the PolyQ7 and PolyQ8 peptide assemblies for labeling the C-termini of the peptides. The fine structures of the 4Bpy-PolyQ7 and 4Bpy-PolyQ8 co-assemblies are observed, and the statistics of the apparent peptide strand length reveal different length distributions for PolyQ7 and PolyQs. One predominant apparent peptide strand length is ob- served for PolyQ7 reflecting one predominant peptide conformation in assembly structures, while three major ap- parent strand lengths can be identified with PolyQ8 reflecting three co-existing peptide conformations in peptide as- semblies. Such drastic difference in assembling characteristics can be considered as a reflection of asymmetric ad- sorption effect ofpeptides relating to odd-even residue numbers of PolyQ7 and PolyQ8,展开更多
Au-core/Pt-shell nanorods (Au@Pt NRs) have been prepared by a Au nanorod-mediated growth method, and they exhibit high electromagnetic field enhancements under coupling conditions. Boosted by a long-range effect of ...Au-core/Pt-shell nanorods (Au@Pt NRs) have been prepared by a Au nanorod-mediated growth method, and they exhibit high electromagnetic field enhancements under coupling conditions. Boosted by a long-range effect of the high electromagnetic field generated by the Au core, the electromagnetic field enhancement can be controlled by changing the morphology of the nanostruc- tures. In this study, we report the results on the simulations of the electromagnetic field enhancement using a finite difference time domain (FDTD) method, taking the real shapes of the Au@Pt NRs into account. Due to the "hot spot" effect, the electromagnetic field can be localized between the Pt nanodots. The electromagnetic field enhancement is found to be rather independent of the Pt con- tent, whereas the local roughness and small sharp features might significantly modify the near-field. As the electromagnetic field enhancement can be tuned by the distribution of Pt nanodots over the Au-core, Au@Pt NRs can find potential applications in related areas.展开更多
基金This work was supported by the Ministry of Science and Technology of China (Grant No. 2015DFG62610) and the National Natural Science Foundation of China (Grant No. 11404074).
文摘We designed a sector bowtie nanoantenna integrated with a rectifier (Au-TiOx-Ti diode) for collect- ing infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at infrared frequencies (5-30 μm) using three-dimensional frequency-domain electro- magnetic field calculation software based on the finite element method. The simulation results indi- cate that the resonance wavelength and local field enhancement are greatly affected by the shape and size of the bowtie nanoantenna, as well as the relative permittivity and conductivity of the dielectric layer. The output current of the rectified nano-rectenna is substantially at nanoampere magnitude with an electric field intensity of 1 V/m. Moreover, the power conversion efficiency for devices with three different substrates illustrates that a substrate with a larger refractive index yields a higher efficiency and longer infrared response wavelength. Consequently, the optimized structure can pro- vide theoretical support for the design of novel optical rectennas and fabrication of optoelectronic devices.
基金the financial support of the National Natural Science Foundation of China (91027031)the Ministry of Science and Technology of China and Chinese Academy of Sciences
文摘As their potential applications in various electronic devices increase, the preparation of anisotropic conjugated polymer nanostructures are highly desirable. This paper presents a review of the literature and our recent results on the self-assembly of one-, two- and three-dimensional anisotropic nanostructures using conjugated polymers as building blocks, including the formation of one-dimensional (1D) nanofibers and nanotubes, two-dimensional (2D) nanoribbons and nanosheets, and three-dimensional (3D) superstructures. The mechanisms guiding the formation of various nanostructures are analyzed by a cooperative effect of - stacking interaction and other noncovalent interactions.
基金supported by the National Natural Science Foundation of China(21474027,21574032)
文摘A series of thiophene-based conjugated microporous polymers (ThPOPs) have been synthesized on the basis of ferric chloride-catalyzed oxidative coupling polymerization of muRi-thienyl monomers. The structures of ThPOPs were confirmed via solid-state t3C CP/MAS NMR spectroscopy and Fourier-transform infrared spectroscopy. The ThPOPs possess high porosities and their high Brunauer-Emmett-Teller specific surface area results vary between 350 and 1320mZg . The presence of abundant ultra-micronores at 0.50-0.63 nm allows ThPOPs efficient gas (carbon dioxide, methane, and hydrogen) adsorption.
文摘The peptide assembly structures of polyglutamine (PolyQ) have been studied by using scanning tunneling microscopy (STM) with high spatial resolution in ambient conditions. 4,4'-Bipyridyl (4Bpy) was introduced into the PolyQ7 and PolyQ8 peptide assemblies for labeling the C-termini of the peptides. The fine structures of the 4Bpy-PolyQ7 and 4Bpy-PolyQ8 co-assemblies are observed, and the statistics of the apparent peptide strand length reveal different length distributions for PolyQ7 and PolyQs. One predominant apparent peptide strand length is ob- served for PolyQ7 reflecting one predominant peptide conformation in assembly structures, while three major ap- parent strand lengths can be identified with PolyQ8 reflecting three co-existing peptide conformations in peptide as- semblies. Such drastic difference in assembling characteristics can be considered as a reflection of asymmetric ad- sorption effect ofpeptides relating to odd-even residue numbers of PolyQ7 and PolyQ8,
文摘Au-core/Pt-shell nanorods (Au@Pt NRs) have been prepared by a Au nanorod-mediated growth method, and they exhibit high electromagnetic field enhancements under coupling conditions. Boosted by a long-range effect of the high electromagnetic field generated by the Au core, the electromagnetic field enhancement can be controlled by changing the morphology of the nanostruc- tures. In this study, we report the results on the simulations of the electromagnetic field enhancement using a finite difference time domain (FDTD) method, taking the real shapes of the Au@Pt NRs into account. Due to the "hot spot" effect, the electromagnetic field can be localized between the Pt nanodots. The electromagnetic field enhancement is found to be rather independent of the Pt con- tent, whereas the local roughness and small sharp features might significantly modify the near-field. As the electromagnetic field enhancement can be tuned by the distribution of Pt nanodots over the Au-core, Au@Pt NRs can find potential applications in related areas.