期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Simulation of Deep Water Wave Climate for the Indian Seas
1
作者 J.Swain P.A.Umesh +1 位作者 M.Baba A.S.N.Murty 《Journal of Marine Science》 2021年第2期30-49,共20页
The ocean wave climate has a variety of applications in Naval defence.However,a long-term and reliable wave climate for the Indian Seas(The Arabian Sea and The Bay of Bengal)over a desired grid resolution could not be... The ocean wave climate has a variety of applications in Naval defence.However,a long-term and reliable wave climate for the Indian Seas(The Arabian Sea and The Bay of Bengal)over a desired grid resolution could not be established so far due to several constraints.In this study,an attempt was made for the simulation of wave climate for the Indian Seas using the third-generation wave model(3g-WAM)developed by WAMDI group.The 3g-WAM as such was implemented at NPOL for research applications.The specific importance of this investigation was that,the model utilized a“mean climatic year of winds”estimated using historical wind measurements following statistical and probabilistic approaches as the winds which were considered for this purpose were widely scattered in space and time.Model computations were carried out only for the deep waters with current refraction.The gridded outputs of various wave parameters were stored at each grid point and the spectral outputs were stored at selected locations.Monthly,seasonal and annual distributions of significant wave parameters were obtained by post-processing some of the model outputs.A qualitative validation of simulated wave height and period parameters were also carried out by comparing with the observed data.The study revealed that the results of the wave climate simulation were quite promising and they can be utilized for various operational and ocean engineering applications.Therefore,this study will be a useful reference/demonstration for conducting such experiments in the areas where wind as well as wave measurements are insufficient. 展开更多
关键词 3g-WAM Wave climate simulation Wave model validation Mean climatic year of winds
下载PDF
Characterization of partial melting events in garnet-cordierite gneiss from the Kerala Khondalite Belt,India
2
作者 Nilanjana Sorcar Kumar Batuk Joshi +2 位作者 Elson POliveira JKTomson VNandakumar 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第2期597-611,共15页
Phase equilibria modelling coupled with U–Pb zircon and monazite ages of garnet–cordierite gneiss from Vallikodu Kottayam in the Kerala Khondalite Belt,southern India are presented here.The results suggest that the ... Phase equilibria modelling coupled with U–Pb zircon and monazite ages of garnet–cordierite gneiss from Vallikodu Kottayam in the Kerala Khondalite Belt,southern India are presented here.The results suggest that the area attained peak P–T conditions of^900C at 7.5–8 kbar,followed by decompression to 3.5–5 kbar and cooling to 450–480C,preserving signatures of the partial melting event in the field of high to ultra-high temperature metamorphism.Melt reintegration models suggest that up to 35%granitic melt could have been produced during metamorphism at^950C.The U–Pb age data from zircons(~1.0–~0.7 Ga)and chemical ages from monazites(~540 Ma and^941 Ma)reflect a complex tectonometamorphic evolution of the terrain.The^941 Ma age reported from these monazites indicate a Tonian ultra-high temperature event,linked to juvenile magmatism/deformation episodes reported from the Southern Granulite Terrane and associated fragments in Rodinia,which were subsequently overprinted by the Cambrian(~540 Ma)tectonothermal episode. 展开更多
关键词 Kerala khondalite belt(KKB) Garnet-cordierite gneiss Partial melting PSEUDOSECTION Monazite-zircon geochronology
下载PDF
From source to emplacement:The origin of leucogranites from the Sikkim-Darjeeling Himalayas,India
3
作者 Tanya Srivastava Nigel Harris +2 位作者 Catherine Mottram Kumar Batuk Joshi Nishchal Wanjari 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第1期384-401,共18页
Himalayan leucogranites are important for understanding the tectonic evolution of collision zones in general and the causes of crustal melting in the Himalayan orogen in particular.This paper aims to understand the me... Himalayan leucogranites are important for understanding the tectonic evolution of collision zones in general and the causes of crustal melting in the Himalayan orogen in particular.This paper aims to understand the melt source and emplacement age of the leucogranites from Sikkim in order to decipher the deep geodynamic processes of the eastern Himalayas.Zircon U-Pb analysis of the Higher Himalayan Sequence(HHS)metamorphic core reveals a prolonged period of crustal melting between>33 Ma and ca.14 Ma.Major and trace element abundances are presented for 27 leucogranites from North Sikkim that are classified into two-mica and tourmaline leucogranite types.They are peraluminous in composition,characterized by high SiO2(70.91-74.9 wt.%),Al2O3(13.69-15.82 wt.%),and low MgO(0.13-0.74 wt.%).Elemental abundances suggest that Sikkim Himalayan leucogranites are derived from crustal melts.The two-mica leucogranites are derived from a metagreywacke source,whereas the tourmaline leucogranites are sourced from metapelitic sources,with inherited zircons indicating an HHS origin for both types.U-Pb zircon geochronology of the two mica leucogranites indicates ages of ca.19-15 Ma,consistent with crustal melting recorded in HHS gneisses from Darjeeling.Monazites from both the two-mica and tourmaline leucogranites yield a crystallization age of ca.15-14 Ma,coeval with movement on the Main Central Thrust and South Tibetan Detachment System which further provides constraints on the timing and mechanism of petrogenesis of leucogranites in the Sikkim Himalayas. 展开更多
关键词 LEUCOGRANITES GNEISS U-Pb geochronology Zircon MONAZITE Sikkim-Darjeeling Himalayas
原文传递
Hydrocarbon fluid inclusions and source rock parameters:A comparison from two dry wells in the western offshore,India
4
作者 Silpa Thankan V.Nandakumar S.Shivapriya 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第1期64-78,共15页
Fluid inclusions represent the direct evidence of paleofluids and can provide valuable information on the evolution of sedimentary basins and oil-bearing strata.Hydrocarbon fluid inclusion(s)(HCFIs)are the vestiges of... Fluid inclusions represent the direct evidence of paleofluids and can provide valuable information on the evolution of sedimentary basins and oil-bearing strata.Hydrocarbon fluid inclusion(s)(HCFIs)are the vestiges of oil from the geological formations.The paper delineates the paleotemperature(T_(h))/oil window,the oil quality of HCFIs and Raman peaks corresponding to hydrocarbon species of HCFIs using fluid inclusion techniques,and source rock potential of hydrocarbon generation,thermal maturity,the quantity of organic matter,and the kerogen types obtained through Rock-Eval pyrolysis data from two dry wells RV-1 well of Mumbai offshore and KKD-1A well of Kerala-Konkan Basin.The present study compares the fluid inclusion parameters as well as the source rock geochemical characteristics of these two dry wells to address the scientific problem of the wells going dry.Further,evaluated whether the results agree with an earlier finding from a case study of two wells named KK4C-Al(Kerala-Konkan basin)and RV-1 well where only a few parameters such as temperature of homogenization(T_(h))&API gravity were utilised,and the chances of getting oil in the nearby areas of these two wells were reported.In the present study,the fluid inclusion parameters such as the palaeotemperature(T_(h)),API Gravity and Raman spectra were obtained from micron sized fluid inclusions at different depths for a quick assessment of nature of oil inclusions within the two dry wells.Along with fluid inclusion parameters,different source rock parameters obtained from Rock-Eval Pyrolysis analysis(secondary data)such as S1,S2,S3,(T_(max)),Hydrogen Index(HI),Oxygen Index(OI),Potential Yield(PY),Production Index(PI)and Total Organic Carbon Content(TOC)were also considered for a detailed source-rock evaluation of two wells(RV-1 and KKD-1A)and the results act as the supporting evidence to address the reason for the wells gone dry.Temperature of homogenisation(T_(h))of hydrocarbon Fluid Inclusion Assemblages(FIAs)from both the wells fall in the oil window(60-150℃)range indicating that there was a conducive thermal condition favourable for oil generation in these two basins.API gravity of oils in RV-1 well of Mumbai offshore(48-53)was lighter when compared to those in KKD-1A(18-22)of Kerala-Konkan basin.Raman spectra of HCFI samples could decipher important hydrocarbon species from RV-1 well samples.Raman spectra of KKD-1A well show less prominent peaks(broad)only.Pyrolysis data shows that Paleocene-Early Eocene source rocks of Panna formation of RV1 well are mature enough to generate hydrocarbons.On the other hand,Paleocene aged source rocks of Kasargod formation of KKD-1A well are immature.Source rock maturity therefore could be considered as crucial in hydrocarbon generation in these two wells even if oil-window was achieved.This study reports that,in RV-1 well,even though it is a dry well in a proven basin,the oil window,API gravity of oils and constituents from HCFIs of RV-1 well and the source-rock maturity opens up a demand for detailed exploration in nearby areas of RV-1 in the Mumbai offshore basin hopeful of finding a high-value prospect for oil,whereas the fluid inclusion studies in the HCFIs of KKD-1A well of Kerala-Konkan basin is showing only a minimal chance of oil generation that too of a heavy nature and the source rock immature characteristics suggesting only minimal generation of hydrocarbons.Due to the heaviness of the available oil in the KKD-1A well impedes migration.Our study suggests that there is no potential for finding oil in the nearby areas of KKD-1A well of Kerala-Konkan basin. 展开更多
关键词 Hydrocarbon fluid inclusions(HCFIs) Spectroscopic analysis Oil window API gravity Rock-Eval pyrolysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部