期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nonlinear amplitude versus angle inversion for transversely isotropic media with vertical symmetry axis using new weak anisotropy approximation equations 被引量:6
1
作者 Lin Zhou Zhuo-Chao Chen +3 位作者 Jing-Ye Li Xiao-Hong Chen Xing-Ye Liu Jian-Ping Liao 《Petroleum Science》 SCIE CAS CSCD 2020年第3期628-644,共17页
In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs wit... In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs with strong seismic anisotropy.Theoretically,the above problems can be solved by utilizing the exact reflection coefficients equations.However,their complicated expression increases the difficulty in calculating the Jacobian matrix when applying them to the Bayesian deterministic inversion.Therefore,the new reduced approximation equations starting from the exact equations are derived here by linearizing the slowness expressions.The relatively simple form and satisfactory calculation accuracy make the reduced equations easy to apply for inversion while ensuring the accuracy of the inversion results.In addition,the blockiness constraint,which follows the differentiable Laplace distribution,is added to the prior model to improve contrasts between layers.Then,the concept of GLI and an iterative reweighted least-squares algorithm is combined to solve the objective function.Lastly,we obtain the iterative solution expression of the elastic parameters and anisotropy parameters and achieve nonlinear AVA inversion based on the reduced equations.The test results of synthetic data and field data show that the proposed method can accurately obtain the VTI parameters from prestack AVA seismic data. 展开更多
关键词 Transversely isotropic media with vertical symmetry axis(VTI) New reduced approximation equations Differentiable Laplace distribution Blockiness constraint
下载PDF
Monitoring of steam chamber in steam-assisted gravity drainage based on the temperature sensitivity of oil sand
2
作者 GAO Yunfeng FAN Ting’en +4 位作者 GAO Jinghuai LI Hui DONG Hongchao MA Shigang YUE Qingfeng 《Petroleum Exploration and Development》 CSCD 2021年第6期1411-1419,共9页
Thermosensitivity experiments and simulation calculations were conducted on typical oil sand core samples from Kinosis,Canada to predict the steam chamber development with time-lapse seismic data during the steam-assi... Thermosensitivity experiments and simulation calculations were conducted on typical oil sand core samples from Kinosis,Canada to predict the steam chamber development with time-lapse seismic data during the steam-assisted gravity drain-age(SAGD).Using an ultrasonic base made of polyether ether ketone resin instead of titanium alloy can improve the signal en-ergy and signal-to-noise ratio and get clear first arrival;with the rise of temperature,heavy oil changes from glass state(at-34.4℃),to quasi-solid state,and to liquid state(at 49.0℃)gradually;the quasi-solid heavy oil has significant frequency dis-persion.For the sand sample with high oil saturation,its elastic property depends mainly on the nature of the heavy oil,while for the sand sample with low oil saturation,the elastic property depends on the stiffness of the rock matrix.The elastic property of the oil sand is sensitive to temperature noticeably,when the temperature increases from 10℃ to 175℃,the oil sand samples decrease in compressional and shear wave velocities significantly.Based on the experimental data,the quantita-tive relationship between the compressional wave impedance of the oil sand and temperature was worked out,and the tem-perature variation of the steam chamber in the study area was predicted by time-lapse seismic inversion. 展开更多
关键词 oil sand temperature sensitivity rock physical properties SAGD steam chamber time-lapse seismic survey
下载PDF
An improved method for internal multiple elimination using the theory of virtual events
3
作者 Pei-Nan Bao Ying Shi +2 位作者 Wei-Hong Wang Wei Zhang Zhe-Jun Pan 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2663-2674,共12页
Compared with first-order surface-related multiples from marine data,the onshore internal multiples are weaker and are always combined with a hazy and occasionally strong interference pattern.It is usually difficult t... Compared with first-order surface-related multiples from marine data,the onshore internal multiples are weaker and are always combined with a hazy and occasionally strong interference pattern.It is usually difficult to discriminate these events from complex targets and highly scattering overburdens,especially when the primary energy from deep layers is weaker than that from shallow layers.The internal multiple elimination is even more challenging due to the fact that the velocity and energy difference between primary reflections and internal multiples is tiny.In this study,we propose an improved method which formulates the elimination of the internal multiples as an optimization problem and develops a convolution factor T.The generated internal multiples at all interfaces are obtained using the convolution factor T through iterative inversion of the initial multiple model.The predicted internal multiples are removed from seismic data through subtraction.Finally,several synthetic experiments are conducted to validate the effectiveness of our approach.The results of our study indicate that compared with the traditional virtual events method,the improved method simplifies the multiple prediction process in which internal multiples generated from each interface are built through iterative inversion,thus reducing the calculation cost,improving the accuracy,and enhancing the adaptability of field data. 展开更多
关键词 Internal multiple Convolution factor ELIMINATION Virtual events
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部