期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Neurotrophic effects of dental pulp stem cells in repair of peripheral nerve after crush injury 被引量:7
1
作者 Dian-Ri Wang Yu-Hao Wang +1 位作者 Jian Pan Wei-Dong Tian 《World Journal of Stem Cells》 SCIE CAS 2020年第10期1196-1213,共18页
BACKGROUND Nerve diseases and injuries,which are usually accompanied by motor or sensory dysfunction and disorder,impose a heavy burden upon patients and greatly reduce their quality of life.Dental pulp stem cells(DPS... BACKGROUND Nerve diseases and injuries,which are usually accompanied by motor or sensory dysfunction and disorder,impose a heavy burden upon patients and greatly reduce their quality of life.Dental pulp stem cells(DPSCs),derived from the neural crest,have many characteristics that are similar to those of neural cells,indicating that they can be an ideal source for neural repair.AIM To explore the potential roles and molecular mechanisms of DPSCs in crushed nerve recovery.METHODS DPSCs were isolated,cultured,and identified by multilineage differentiation and flow cytometry.Western blot and immunofluorescent staining were applied to analyze the expression levels of neurotrophic proteins in DPSCs after neural induction.Then,we collected the secretions of DPSCs.We analyzed their effects on RSC96 cell proliferation and migration by CCK8 and transwell assays.Finally,we generated a sciatic nerve crush injury model in vivo and used the sciatic function index,walking track analysis,muscle weight,and hematoxylin&eosin(H&E)staining to further evaluate the nerve repair ability of DPSCs.RESULTS DPSCs highly expressed several specific neural markers,including GFAP,S100,Nestin,P75,and NF200,and were inclined toward neural differentiation.Furthermore,neural-induced DPSCs(N-DPSCs)could express neurotrophic factors,including NGF,BDNF,and GDNF.The secretions of N-DPSCs could enhance the proliferation and migration of Schwann cells.In vivo,both DPSC and N-DPSC implants alleviated gastrocnemius muscle atrophy.However,in terms of anatomy and motor function,as shown by H&E staining,immunofluorescent staining,and walking track analyses,the repair effects of N-DPSCs were more sustained,potent,and effective than those of DPSCs and the controls.CONCLUSION In summary,this study demonstrated that DPSCs are inclined to differentiate into neural cells.N-DPSCs express neurotrophic proteins that could enhance the proliferation and migration of SCs.Furthermore,our results suggested that NDPSCs could help crushed nerves with functional recovery and anatomical repair in vivo.Thus,DPSCs or N-DPSCs could be a promising therapeutic cell source for peripheral nerve repair and regeneration. 展开更多
关键词 Dental pulp stem cells Nerve repair Nerve regeneration Neurotrophic effects
下载PDF
Therapeutic potential of dental pulp stem cells and their derivatives:Insights from basic research toward clinical applications 被引量:1
2
作者 Sheng-Meng Yuan Xue-Ting Yang +2 位作者 Si-Yuan Zhang Wei-Dong Tian Bo Yang 《World Journal of Stem Cells》 SCIE 2022年第7期435-452,共18页
For more than 20 years,researchers have isolated and identified postnatal dental pulp stem cells(DPSCs)from different teeth,including natal teeth,exfoliated deciduous teeth,healthy teeth,and diseased teeth.Their mesen... For more than 20 years,researchers have isolated and identified postnatal dental pulp stem cells(DPSCs)from different teeth,including natal teeth,exfoliated deciduous teeth,healthy teeth,and diseased teeth.Their mesenchymal stem cell(MSC)-like immunophenotypic characteristics,high proliferation rate,potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs.In addition,several main application forms of DPSCs and their derivatives have been investigated,including stem cell injections,modified stem cells,stem cell sheets and stem cell spheroids.In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs.Therefore,DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration.In this review,we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine.We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions.The methodologies for therapeutic administration of DPSCs and their derivatives are introduced,including single injections and the transplantation of the cells with a support,as cell sheets,or as cell spheroids.We also summarize the underlying mechanisms of the regenerative potential of DPSCs. 展开更多
关键词 Dental pulp stem cells Cell injections Modified cells Cell sheets Cell spheroids REGENERATION
下载PDF
Recruited CD68^(+)CD206^(+)macrophages orchestrate graft immune tolerance to prompt xenogeneic-dentin matrix-based tooth root regeneration 被引量:2
3
作者 Hui Li Jingjing Sun +8 位作者 Hefeng Yang Xue Han Xiangyou Luo LiJun Liao Bo Yang Tian Zhu Fangjun Huo Weihua Guo Weidong Tian 《Bioactive Materials》 SCIE 2021年第4期1051-1072,共22页
Successful regenerative medicine strategies of xenogeneic extracellular matrix need a synergistic balance among inflammation,fibrosis,and remodeling process.Adaptive macrophage subsets have been identified to modulate... Successful regenerative medicine strategies of xenogeneic extracellular matrix need a synergistic balance among inflammation,fibrosis,and remodeling process.Adaptive macrophage subsets have been identified to modulate inflammation and orchestrate the repair of neighboring parenchymal tissues.This study fabricated PPARγ-primed CD68+CD206+M2 phenotype(M2γ),and firstly verified their anti-inflammatory and tissue-regenerating roles in xenogeneic bioengineered organ regeneration.Our results showed that Th1-type CD3^(+)CD8^(+)T cell response to xenogeneic-dentin matrix-based bioengineered root complex(xeno-complex)was significantly inhibited by M2γmacrophage in vitro.PPARγactivation also timely recruited CD68^(+)CD206^(+)tissue macrophage polarization to xeno-complex in vivo.These subsets alleviated proinflammatory cytokines(TNF-α,IFN-γ)at the inflammation site and decreased CD3^(+)CD8^(+)T lymphocytes in the periphery system.When translated to an orthotopic nonhuman primate model,PPARγ-primed M2 macrophages immunosuppressed IL-1β,IL-6,TNF-α,MMPs to enable xeno-complex to effectively escape immune-mediated rejection and initiate graft-host synergistic integrity.These collective activities promoted the differentiation of odontoblast-like and periodontal-like cells to guide pulp-dentin and cementum-PDLs-bone regeneration and rescued partially injured odontogenesis such as DSPP and periostin expression.Finally,the regenerated root showed structure-biomechanical and functional equivalency to the native tooth.The timely conversion of M1-to-M2 macrophage mainly orchestrated odontogenesis,fibrogenesis,and osteogenesis,which represents a potential modulator for intact parenchymal-stromal tissue regeneration of targeted organs. 展开更多
关键词 Xenogeneic extracellular matrix Macrophage polarization Cellular response Organ regeneration Parenchymal and stromal tissues regeneration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部