期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved the biocompatibility of cancellous bone with compound physicochemical decellularization process 被引量:4
1
作者 You Ling Weikang Xu +2 位作者 Lifeng Yang Changyan Liang Bin Xu 《Regenerative Biomaterials》 SCIE 2020年第5期443-451,共9页
Due to the unique microstructures and components of extracellular matrix(ECM),decellularized scaffolds had been used widely in clinical.The reaction of the host toward decellularized scaffolds depends on their biocomp... Due to the unique microstructures and components of extracellular matrix(ECM),decellularized scaffolds had been used widely in clinical.The reaction of the host toward decellularized scaffolds depends on their biocompatibility,which should be satisfied before applied in clinical.The aim of this study is to develop a decellularized xenograft material with good biocompatibility for further bone repair,in an effective and gentle method.The existing chemical and physical decellularization techniques including ethylene diamine tetraacetic acid(EDTA),sodium dodecyl sulfate(SDS)and supercritical carbon dioxide(SC-CO2)were combined and modified to decellularize bovine cancellous bone(CB).After decellularization,almost 100%of A-Gal epitopes were removed,the combination of collagen,calcium and phosphate was reserved.The direct and indirect contact with macrophages was used to evaluate the cytotoxicity and immunological response of the materials.Mesenchymal stem cells(MSCs)were used in the in vitro cells’proliferation assay.The decellularized CB was proved has no cytotoxicity(grade 1)and no immunological response(NO,IL-2,IL-6 and TNF-α secretion inhibited),and could support MSCs proliferated continuedly.These results were similar to that of commercial decellularized human bone.This study suggests the potential of using this kind of combine decellularization process to fabricate heterogeneous ECM scaffolds for clinical application. 展开更多
关键词 extracellular matrix cancellous bone physicochemical decellularization BIOCOMPATIBILITY
原文传递
Investigating design principles of micropatterned encapsulation systems containing high-density microtissue arrays
2
作者 JIANG LiYang LIU JiaYing +2 位作者 WANG Kai GU Xi LUO Ying 《Science China(Life Sciences)》 SCIE CAS 2014年第2期221-231,共11页
Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system.Recently,microfabrication techniques have been used to create hydrogel membranes to encapsulate microtiss... Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system.Recently,microfabrication techniques have been used to create hydrogel membranes to encapsulate microtissue in an arrayed organization.The method illustrates a new macroencapsulation paradigm that may allow transplantation of a large number of cells with microscale spatial control,while maintaining an encapsulation device that is easily maneuverable and remaining integrated following transplantation.This study aims to investigate the design principles that relate to the translational application of micropatterned encapsulation membranes,namely,the control over the transplantation density/quantity of arrayed microtissues and the fidelity of pre-formed microtissues to micropatterns.Agarose hydrogel membranes with microwell patterns were used as a model encapsulation system to exemplify these principles.Our results show that high-density micropatterns can be generated in hydrogel membranes,which can potentially maximize the percentage volume of cellular content and thereby the transplantation efficiency of the encapsulation device.Direct seeding of microtissues demonstrates that microwell structures can efficiently position and organize pre-formed microtissues,suggesting the capability of micropatterned devices for manipulation of cellular transplants at multicellular or tissue levels.Detailed theoretical analysis was performed to provide insights into the relationship between micropatterns and the transplantation capacity of membrane-based encapsulation.Our study lays the ground for developing new macroencapsulation systems with microscale cellular/tissue patterns for regenerative transplantation. 展开更多
关键词 封装系统 高密度 图案 设计 阵列 移植密度 水凝胶膜 微细加工技术
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部