Aluminum production by carbothermo-chlorination reduction of alumina in vacuum was investigated by XRD, SEM, EDS and thermodynamic analysis. Thermodynamic calculations indicate that AlCl(g) generated by carbothermo-...Aluminum production by carbothermo-chlorination reduction of alumina in vacuum was investigated by XRD, SEM, EDS and thermodynamic analysis. Thermodynamic calculations indicate that AlCl(g) generated by carbothermo-chlorination process among Al2O3-C-AlCl3 system should be at 1377-1 900K (100 Pa) and AlCl(g) will disproportionate into aluminum and AlCl3(g) below 950-1 050 K at 10-102 Pa. Experimental results demonstrate that Al4O4C and Al4C3 begin to be formed by Al2O3-C system over 1698 K (40-150Pa). It is Al4O4C and Al4C3 but not Al2O3-C that participate in the carbothermic-chlorination reaction. Temperature for AlCl(g) generated by Al4O4C-AlCl3-C, Al4C3-Al2O3-AlCl3 and Al4OC-Al4C3-Al2O3-AlCl3-C system is 1 703-1853 K (40-150 Pa). Aluminum metal is produced by AlCl(g) disproportionation process below 933 K. The average purity of aluminum metal reaches 95.32%, which has perfect crystallization and uniform grain size.展开更多
The carbothermal reduction-chlorination-disproportionation of alumina in vacuum was investigated by XRD and thermodynamic analysis. The experiments on alumina and graphite at 1643-1843 K in vacuum were carried out. Th...The carbothermal reduction-chlorination-disproportionation of alumina in vacuum was investigated by XRD and thermodynamic analysis. The experiments on alumina and graphite at 1643-1843 K in vacuum were carried out. The results demonstrate that AlCl3(g) reacts with Al2O(g) or Al(g) generated from the carbothermal reduction of alumina to form AlCl(g), and the AlCl(g) disproportionates to aluminum and AlCl3(g) at a lower temperature and the reaction rate of AlCl(g) reaches 90% at 980 K and 100 Pa. The aluminum can absorb CO to catalyze its disproportionation to C and CO2, and react backward with CO to form Al4C3, Al2O3, C and CO2, resulting in the aluminum product containing C, Al4C3 and Al2O3. The impurities in the aluminum product decrease as the AlCl(g) disproportionation temperature decreases. AlCl3 condenses at a temperature approximated to the room temperature.展开更多
Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction te...Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction temperature reduces compared with that under normal pressure, and the preferential order of products is Al404C, Al4C3, Al2OC, Al20 and A1. Experiment results show that the carbothermic reduction products of alumina are A1404C and A14C3, and neither A12OC, Al20 or Al was found. During the carbothermic reduction process, the reaction rate of Al203 and carbon decreases gradually with increasing time. Meanwhile, lower system pressure or higher temperature is beneficial to the carbothermic reduction of alumina process. A1404C is firstly formed in the carbothermic reaction, and then A14C3 is formed in lower system pressure or at higher temperature.展开更多
Thermodynamic calculation, ab initio molecular dynamics(AIMD) and vacuum decomposition experiments were performed to study the volatilization behaviors of Mo and S from molybdenite concentrate by vacuum decomposition....Thermodynamic calculation, ab initio molecular dynamics(AIMD) and vacuum decomposition experiments were performed to study the volatilization behaviors of Mo and S from molybdenite concentrate by vacuum decomposition. In thermodynamic calculation, starting decomposition temperatures of reactions were calculated, and saturated vapor pressures of Mo, S and Mo S2 were also analyzed. In AIMD, geometries of the Sn(n≤8), Mom(m≤8) and MomSn(m+n≤8) clusters have been optimized using density functional theory(DFT) with generalized gradient approximation(GGA). And these clusters were simulated in DFT with Cambridge Sequential Total Energy Package(CASTEP) code of Material Studio software. Structures and stabilities of these clusters before and after molecular dynamics simulations were discussed, and diffusion coefficients were also calculated. In vacuum decomposition experiments, relationship between heat preservation time and volatilization rate of Mo and S was obtained, while the constant temperature and chamber pressure were 1823 K and 5–35 Pa, respectively. Above all, both the theoretical and experimental results showed that volatilization behaviors of Mo and S during vacuum decomposition process of molybdenite concentrate were as follows: Mo could partly evaporate into the condensate in the form of clusters, and S could easily evaporate into the condensate.展开更多
The electronic structures of three types of lattice defects in pyrites (i.e., As-substituted, Co-substituted, and intercrystalline Au py-rites) were calculated using the density functional theory (DFT). In additio...The electronic structures of three types of lattice defects in pyrites (i.e., As-substituted, Co-substituted, and intercrystalline Au py-rites) were calculated using the density functional theory (DFT). In addition, their band structures, density of states, and difference charge density were studied. The effect of the three types of lattice defects on the pyrite floatability was explored. The calculated results showed that the band-gaps of pyrites with Co-substitution and intercrystalline Au decreased significantly, which favors the oxidation of xanthate to dix-anthogen and the adsorption of dixanthogen during pyrite flotation. The stability of the pyrites increased in the following order: As-substituted 〈 perfect 〈 Co-substituted 〈 intercrystalline Au. Therefore, As-substituted pyrite is easier to be depressed by intensive oxidi-zation compared to perfect pyrite in a strongly alkaline medium. However, Co-substituted and intercrystalline Au pyrites are more difficult to be depressed compared to perfect pyrite. The analysis of the Mulliken bond population and the electron density difference indicates that the covalence characteristic of the S Fe bond is larger compared to the S S bond in perfect pyrite. In addition, the presence of the three types of lattice defects in the pyrite bulk results in an increase in the covalence level of the S Fe bond and a decrease in the covalence level of the S S bond, which affect the natural floatability of the pyrites.展开更多
La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and char...La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility.展开更多
Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount...Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount(over 100,000 tons),therefore,value-added reutilization of titanium in spent SCR catalysts is considerably meaningful.In this paper,a novel method is proposed for converting the titanium oxide in spent SCR denitration catalysts to metallic titanium.Specifically,titanium dioxide(TiO_(2)) was firstly obtained from spent SCR denitration catalysts after removing the impurities by hydrometallurgy process.Then,TiO_(2) is converted to Ti_(2)CO by carbothermic reduction method,and Ti_(2)CO was further purified by oleic acid capture.Finally,by utilizing the as-prepared Ti_(2)CO as the consumable anode in the NaCl-KCl molten salt,high-purity metallic titanium was deposited at cathode,all confirming the feasibility for the conversion of low-grade TiO_(2) in the spent catalysts,from 60 wt% to high-purity metallic Ti(99.5 wt%), furthermore,the energy consumption of this process is 3950 kWh tonne-1 Ti,which is lower than that of most traditional titanium metallurgy methods.The method herein can provide new insights for the value-added recycling of titanium resources in urban mines.展开更多
The surface disproportionation reaction mechanism of aluminum subchloride on the aluminum (100) surfaces has been investigated by the plane-wave density functional theory (DFT). Three kinds of possible reaction me...The surface disproportionation reaction mechanism of aluminum subchloride on the aluminum (100) surfaces has been investigated by the plane-wave density functional theory (DFT). Three kinds of possible reaction mechanism of AlCl disproportionation reaction on the aluminum (100) surfaces have been taken into account. The structures of reactants and products have been optimized, transition states have been confirmed and activation energies have been calculated. The adsorption energy of reactants and desorption energy of products have been determined. All of these have been employed to confirm the reaction mechanism and the rate determining step ofAlCl disproportionation reaction on the aluminum (100) surfaces.展开更多
The electrochemical behavior of Mg^(2+)and Al^(3+)in LiCl-KCl(mass 4:1)melt at 973 K was studied on a Mo electrode systematically by cyclic voltammetry,square wave voltammetry and chronopotentiometry.The results showe...The electrochemical behavior of Mg^(2+)and Al^(3+)in LiCl-KCl(mass 4:1)melt at 973 K was studied on a Mo electrode systematically by cyclic voltammetry,square wave voltammetry and chronopotentiometry.The results showed that the reductions of Mg^(2+)and Al^(3+)were reversible processes controlled by the rate of the mass transfer.When Mg^(2+)and Al^(3+)coexisted in LiCl-KCl melt,they had no significant effect on the reduction potential of each other.The equilibrium potentials of Mg^(2+)/Mg and Al^(3+)/Al were obtained by open circuit potential method.Their apparent standard potentials were also calculated in this system and the values were-2.52 V vs Cl_(2)/Cl^(−),-1.66 V vs Cl_(2)/Cl^(−),respectively.Correspondingly,the apparent Gibbs free energies of Mg^(2+)/Mg and Al^(3+)/Al were-485.71 kJ/mol^(-1),-480.78 kJ/mol^(-1).Finally,potentiostatic electrolysis was performed on a Mo electrode in LiCl-KCl-MgCl_(2)-AlCl_(3)(the mass ratio of MgCl_(2) to AlCl_(3) was 10:1)melt at different potentials.The components of the deposits were characterized by scanning electron microscope and energy dispersive spectroscopy.The study revealed that the content of Al in the deposit decreased as the overpotential increased and Al tended to segregate at the grain boundaries.展开更多
X-ray photoelectron spectroscopy(XPS)and Raman spectroscopy were used to analyze the complexes in LiCl−KCl eutectic salt containing VCl_(3) and KF.The additional fluoride ions would replace chloride ions and combine w...X-ray photoelectron spectroscopy(XPS)and Raman spectroscopy were used to analyze the complexes in LiCl−KCl eutectic salt containing VCl_(3) and KF.The additional fluoride ions would replace chloride ions and combine with V(Ⅲ)to form VF_(6)^(3-).The electrochemical behavior of V(Ⅲ)was evaluated under condition of the molar concentration ratio of F−to Vn+(α)equal to 0:1,1:1,2:1,5:1,20:1 and 50:1,respectively.The results showed that a new reduction step appeared:VF_(6)^(3-)→V^(2+),and the reduction mechanism of vanadium ions became more complicated.The metallic vanadium was deposited on the tungsten electrode at−2.90 V in the LiCl−KCl melts for 6 h,and the products were characterized by SEM−EDS.It was indicated that the particle size of the product decreased with adding fluoride ions for the forming of the coordination compound VF_(6)^(3-).展开更多
La0.8Sr0.2Co1-yFeyO3-δ (y=0.2, 0.4, 0.6, 0.8) powders were synthesized by ethylenediamine tetraacetic acid (EDTA) complexing sol-gel process. The powders were characterized via X-ray diffraction (XRD) and scanning el...La0.8Sr0.2Co1-yFeyO3-δ (y=0.2, 0.4, 0.6, 0.8) powders were synthesized by ethylenediamine tetraacetic acid (EDTA) complexing sol-gel process. The powders were characterized via X-ray diffraction (XRD) and scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDS). The results showed that single-phased perovskite-type oxide powders with small particle size were obtained by the process, and the compositions of the productions agreed with the designed molar ratio. The electronic conductivity and ionic conductivity of La0.8Sr0.2Co1-yFeyO3-δ were investigated by DC four-terminal method and AC impedance spectroscopy, respectively. The electronic conductivity of La0.8Sr0.2Co1-yFeyO3-δ is approximately 2~4 orders of magnitude higher than the ionic conductivity. It was confirmed that the conductivities of the materials were strongly influenced by the composition anions, temperature and sample preparing process.展开更多
The surface properties of sphalerite (ZnS) were theoretically investigated using first principle calculations based on the density functional theory (DFT). DFT results indicate that both the (110) and the (220...The surface properties of sphalerite (ZnS) were theoretically investigated using first principle calculations based on the density functional theory (DFT). DFT results indicate that both the (110) and the (220) surfaces of sphalerite undergo surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the sur- face, S atoms in the first surface layer move outward from the bulk (dl), whereas Zn atoms move toward the bulk (d2), forming an S-enriched surface. The values of these displacements are 0.003 nm for dl and 0.021 nm for d2 on the (110) surface, and 0.002 nm for dl and 0.011 nm for d2 on the (220) surface. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. X-ray photoelectron spectroscopic (XPS) analysis provides the evidence for the S-enriched surface. A polysulphide (S n^2- ) surface layer with a bind- ing energy of 163.21 eV is formed on the surface of sphalerite after its grinding under ambient atmosphere. This S-enriched surface and the S 2- surface layer have important influence on the flotation properties ofsphalerite. Keywords:展开更多
CuO/γ-Al2O3 sorbents were prepared by means of impregnation. Thermogravimetric technique was used to study the sulfation of CuO/γ-Al2O3 sorbents. The sulfation tests were performed using gas containing 0.1%-0.9% SO2...CuO/γ-Al2O3 sorbents were prepared by means of impregnation. Thermogravimetric technique was used to study the sulfation of CuO/γ-Al2O3 sorbents. The sulfation tests were performed using gas containing 0.1%-0.9% SO2, 5% O2, 3% H2O steam, and N2 as the balance. Experimental conditions including temperature, SO2 concentration and pore structure were studied. The sulfation experiment results show that the sulfation reaction rate increases with increasing temperature and SO2 concentration, and the surface and pore volume decrease after sulfation. Sulfation kinetics analysis shows that the reaction between CuO/γ-Al2O3 and SO2 obeys pore-blocking model well. Proportionality (pore-blocking constant) 1/λ decreases with increasing temperature. The activation energy and reaction order with respect to SO2 obtained are 37.9 kJ/mol and the first order, respectively. The existing state of CuO exerts an influence on activation energy.展开更多
Ce0.8Ca0.2O1.8 (CDC82) anode material was prepared by glycine-nitrate process(GNP). Thermogravimetric(TG) analysis and differential scanning calorimetric(DSC) methods were adopted to characterize the reaction process ...Ce0.8Ca0.2O1.8 (CDC82) anode material was prepared by glycine-nitrate process(GNP). Thermogravimetric(TG) analysis and differential scanning calorimetric(DSC) methods were adopted to characterize the reaction process of CDC82 material. X-ray diffractometry(XRD), scanning electron microcopy(SEM), direct current four probe (four-probe DC) and temperature process reduce(TPR) techniques were adopted to characterize the properties of CDC82 material. After the precursor was sintered at 750 ℃ for 4 h, CDC82 material with pure-fluorite structure and nanometer size was obtained. The total conductivity of CDC82 changes little with temperature in air at 50?850 ℃ , and the maximum value is 0.04 S/cm at 750 ℃ . The total conductivity wholly becomes larger when the atmosphere changes from air to hydrogen, which greatly increases with increasing temperature and reaches the maximum value of 1.09 S/cm at 850 ℃. Some impurities such as CeMg and La2O3 exist after the mixture of CDC82 anode and La1?xSrxGa1?yMgyO3?δ (LSGM) electrolyte material is sintered at 1 200 ℃ for 15 h. The CDC82 material as anode material has excellent catalytic property for hydrogen and methane.展开更多
An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction...An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction thermal plasmas were conducted to investigate the melting behaviour of granulated soda-lime glass powders injected into the plasma. A two-dimensional local thermodynamic equilibrium (LTE) model was performed to simulate the heat and momentum transfer between plasma and particle. Results showed that the particle temperature was strongly affected by the flow rate of carrier gas and the particle size of raw material. A higher flow rate of carrier gas led to lower particle temperature and less energy transferred to particles which resulted in lower vitrification. The incomplete melting of large particles was attributed to the lower central temperature of the particle caused by a larger heat capacity. The numerical analysis explained well the experimental results, which can provide valuable practical guidelines for the process control in the melting process for the glass industry.展开更多
An innovative in-flight glass melting technology with a multi-phase AC arc plasma was developed to save energy and reduce emissions for the glass industry. The effect of the injection position on the in-flight melting...An innovative in-flight glass melting technology with a multi-phase AC arc plasma was developed to save energy and reduce emissions for the glass industry. The effect of the injection position on the in-flight melting behavior of granulated powders was investigated. Results show that the injection position has a strong effect on the melting behavior of alkali-free glass raw material. With the increase in injection distance, the vitrification, decomposition, and particle shrinkage of initial powders are improved. Longer injection distance causes much energy to transfer to particles due to a longer residence time of powder in the high temperature zone. The high vitrification and decomposition degrees indicate that the new in-flight melting technology with 12-phase AC arc can substantially reduce the melting and refining time for glass production.展开更多
An innovative in-flight glass melting technology with induced thermal plasmas was developed for the purpose of energy conservation and environmental protection. Two-dimensional modeling was used to simulate the thermo...An innovative in-flight glass melting technology with induced thermal plasmas was developed for the purpose of energy conservation and environmental protection. Two-dimensional modeling was used to simulate the thermofluid fields in the plasma torch. The in-flight melting behavior of glass raw material was investigated by various analysis methods. Results showed that the plasma temperature was up to 10000 K with a maximum velocity over 30 m/s, which made it possible to melt the granulated glass raw material within milliseconds. The carbonates in the raw material decomposed completely and the compounds in the raw material attainted 100% vitrification during the in-flight time from the nozzle exit to substrate. The particle melting process is similar to the unreacted-core shrinking model.展开更多
The properties of non-oxide materials are continuously revealed,and their applications in the fields of ceramics,energy,and catalysis are increasingly extensive.Regardless of the traditional binary materials or the MA...The properties of non-oxide materials are continuously revealed,and their applications in the fields of ceramics,energy,and catalysis are increasingly extensive.Regardless of the traditional binary materials or the MAX phases,the preparation methods,which are environmentally friendly,efficient,economical,and easy to scale-up,have always been the focus of attention.Molten salt synthesis has demonstrated unparalleled advantages in achieving non-oxide materials.In addition,with the development of the process in molten salt synthesis,it also shows great potential in scale-up production.In this review,the recent progress of molten salt synthesis in the preparation of binary non-oxide and MAX phase is reviewed,as well as some novel processes.The reaction mechanisms and the influence of synthetic conditions for certain materials are discussed in detail.The paper is finalized with the discussion of the application prospect and future research trends of molten salt synthesis in non-oxide materials.展开更多
LaMnO3 catalysts with three-dimensionally ordered holes perovskite structure were prepared via closepacked SiO2 template synthesized by Stober-Frink method. SEM, XRD and BET were employed to characterize the microstru...LaMnO3 catalysts with three-dimensionally ordered holes perovskite structure were prepared via closepacked SiO2 template synthesized by Stober-Frink method. SEM, XRD and BET were employed to characterize the microstructure, phases and specific surface area. CV method was used to the oxygen electrode beha-vior of catalysts. Diameter of the holes was about 330 nm, corresponding to the size of SiO2 template. Full-cell discharge tests were performed on aluminum-air battery fabricated by porous LaMnO3.Results showed that the discharge performance of porous LaMnO3 were 1.54 V, 1.42 V and 1.24 V respectively when the discharge currents were set at 5 mA/cm^2,10 mA/cm^2 and 20 mA/cm^2, respectively, which were higher than that of LaMnO3 prepared by coprecipitation method(1.33 V, 1.09 V, 0.63 V, respectively).展开更多
基金Project(u0837604) supported by the Joint Funds of the National Natural Science Foundation of China and Yunnan ProvinceProject(20095314110003) supported by the special Research Funds of the Docter Subject of Higher School,China
文摘Aluminum production by carbothermo-chlorination reduction of alumina in vacuum was investigated by XRD, SEM, EDS and thermodynamic analysis. Thermodynamic calculations indicate that AlCl(g) generated by carbothermo-chlorination process among Al2O3-C-AlCl3 system should be at 1377-1 900K (100 Pa) and AlCl(g) will disproportionate into aluminum and AlCl3(g) below 950-1 050 K at 10-102 Pa. Experimental results demonstrate that Al4O4C and Al4C3 begin to be formed by Al2O3-C system over 1698 K (40-150Pa). It is Al4O4C and Al4C3 but not Al2O3-C that participate in the carbothermic-chlorination reaction. Temperature for AlCl(g) generated by Al4O4C-AlCl3-C, Al4C3-Al2O3-AlCl3 and Al4OC-Al4C3-Al2O3-AlCl3-C system is 1 703-1853 K (40-150 Pa). Aluminum metal is produced by AlCl(g) disproportionation process below 933 K. The average purity of aluminum metal reaches 95.32%, which has perfect crystallization and uniform grain size.
基金Project (u0837604) supported by the Joint Funds of the National Natural Science Foundation of China and Yunnan Province
文摘The carbothermal reduction-chlorination-disproportionation of alumina in vacuum was investigated by XRD and thermodynamic analysis. The experiments on alumina and graphite at 1643-1843 K in vacuum were carried out. The results demonstrate that AlCl3(g) reacts with Al2O(g) or Al(g) generated from the carbothermal reduction of alumina to form AlCl(g), and the AlCl(g) disproportionates to aluminum and AlCl3(g) at a lower temperature and the reaction rate of AlCl(g) reaches 90% at 980 K and 100 Pa. The aluminum can absorb CO to catalyze its disproportionation to C and CO2, and react backward with CO to form Al4C3, Al2O3, C and CO2, resulting in the aluminum product containing C, Al4C3 and Al2O3. The impurities in the aluminum product decrease as the AlCl(g) disproportionation temperature decreases. AlCl3 condenses at a temperature approximated to the room temperature.
基金Project(U0837604) supported by the Natural Science Foundation of Yunnan Province,ChinaProject(Jinchuan 201114) supported by the Pre Research Foundation of Jinchuan Group Ltd.,ChinaProject(2011148) supported by the Analysis and Testing Funds of Kunming University of Science and Technology,China
文摘Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction temperature reduces compared with that under normal pressure, and the preferential order of products is Al404C, Al4C3, Al2OC, Al20 and A1. Experiment results show that the carbothermic reduction products of alumina are A1404C and A14C3, and neither A12OC, Al20 or Al was found. During the carbothermic reduction process, the reaction rate of Al203 and carbon decreases gradually with increasing time. Meanwhile, lower system pressure or higher temperature is beneficial to the carbothermic reduction of alumina process. A1404C is firstly formed in the carbothermic reaction, and then A14C3 is formed in lower system pressure or at higher temperature.
基金Projects(1202271,51104078)supported by the National Natural Science Foundation of ChinaProject(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of China
文摘Thermodynamic calculation, ab initio molecular dynamics(AIMD) and vacuum decomposition experiments were performed to study the volatilization behaviors of Mo and S from molybdenite concentrate by vacuum decomposition. In thermodynamic calculation, starting decomposition temperatures of reactions were calculated, and saturated vapor pressures of Mo, S and Mo S2 were also analyzed. In AIMD, geometries of the Sn(n≤8), Mom(m≤8) and MomSn(m+n≤8) clusters have been optimized using density functional theory(DFT) with generalized gradient approximation(GGA). And these clusters were simulated in DFT with Cambridge Sequential Total Energy Package(CASTEP) code of Material Studio software. Structures and stabilities of these clusters before and after molecular dynamics simulations were discussed, and diffusion coefficients were also calculated. In vacuum decomposition experiments, relationship between heat preservation time and volatilization rate of Mo and S was obtained, while the constant temperature and chamber pressure were 1823 K and 5–35 Pa, respectively. Above all, both the theoretical and experimental results showed that volatilization behaviors of Mo and S during vacuum decomposition process of molybdenite concentrate were as follows: Mo could partly evaporate into the condensate in the form of clusters, and S could easily evaporate into the condensate.
基金supported by the National Natural Science Foundation of China (No.u0837602)
文摘The electronic structures of three types of lattice defects in pyrites (i.e., As-substituted, Co-substituted, and intercrystalline Au py-rites) were calculated using the density functional theory (DFT). In addition, their band structures, density of states, and difference charge density were studied. The effect of the three types of lattice defects on the pyrite floatability was explored. The calculated results showed that the band-gaps of pyrites with Co-substitution and intercrystalline Au decreased significantly, which favors the oxidation of xanthate to dix-anthogen and the adsorption of dixanthogen during pyrite flotation. The stability of the pyrites increased in the following order: As-substituted 〈 perfect 〈 Co-substituted 〈 intercrystalline Au. Therefore, As-substituted pyrite is easier to be depressed by intensive oxidi-zation compared to perfect pyrite in a strongly alkaline medium. However, Co-substituted and intercrystalline Au pyrites are more difficult to be depressed compared to perfect pyrite. The analysis of the Mulliken bond population and the electron density difference indicates that the covalence characteristic of the S Fe bond is larger compared to the S S bond in perfect pyrite. In addition, the presence of the three types of lattice defects in the pyrite bulk results in an increase in the covalence level of the S Fe bond and a decrease in the covalence level of the S S bond, which affect the natural floatability of the pyrites.
基金Project supported by the National Natural Science Foundation of China (50204007)the Foundation of Yunnan Province (2005PY01-33)
文摘La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility.
基金the National Natural Science Foundation of China(Grant No.51804277)supported by the State Key Laboratory of Special Rare Metal Materials(No.SKL2020K004)+1 种基金Northwest Rare Metal Materials Research Institutesupported by the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2008)。
文摘Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount(over 100,000 tons),therefore,value-added reutilization of titanium in spent SCR catalysts is considerably meaningful.In this paper,a novel method is proposed for converting the titanium oxide in spent SCR denitration catalysts to metallic titanium.Specifically,titanium dioxide(TiO_(2)) was firstly obtained from spent SCR denitration catalysts after removing the impurities by hydrometallurgy process.Then,TiO_(2) is converted to Ti_(2)CO by carbothermic reduction method,and Ti_(2)CO was further purified by oleic acid capture.Finally,by utilizing the as-prepared Ti_(2)CO as the consumable anode in the NaCl-KCl molten salt,high-purity metallic titanium was deposited at cathode,all confirming the feasibility for the conversion of low-grade TiO_(2) in the spent catalysts,from 60 wt% to high-purity metallic Ti(99.5 wt%), furthermore,the energy consumption of this process is 3950 kWh tonne-1 Ti,which is lower than that of most traditional titanium metallurgy methods.The method herein can provide new insights for the value-added recycling of titanium resources in urban mines.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(No.u0837604) the Funds for Applied Basic Researches of Yunnan Province(No.2010CD022)
文摘The surface disproportionation reaction mechanism of aluminum subchloride on the aluminum (100) surfaces has been investigated by the plane-wave density functional theory (DFT). Three kinds of possible reaction mechanism of AlCl disproportionation reaction on the aluminum (100) surfaces have been taken into account. The structures of reactants and products have been optimized, transition states have been confirmed and activation energies have been calculated. The adsorption energy of reactants and desorption energy of products have been determined. All of these have been employed to confirm the reaction mechanism and the rate determining step ofAlCl disproportionation reaction on the aluminum (100) surfaces.
基金the National Natural Science Foundation of China(Grant No.51804277).
文摘The electrochemical behavior of Mg^(2+)and Al^(3+)in LiCl-KCl(mass 4:1)melt at 973 K was studied on a Mo electrode systematically by cyclic voltammetry,square wave voltammetry and chronopotentiometry.The results showed that the reductions of Mg^(2+)and Al^(3+)were reversible processes controlled by the rate of the mass transfer.When Mg^(2+)and Al^(3+)coexisted in LiCl-KCl melt,they had no significant effect on the reduction potential of each other.The equilibrium potentials of Mg^(2+)/Mg and Al^(3+)/Al were obtained by open circuit potential method.Their apparent standard potentials were also calculated in this system and the values were-2.52 V vs Cl_(2)/Cl^(−),-1.66 V vs Cl_(2)/Cl^(−),respectively.Correspondingly,the apparent Gibbs free energies of Mg^(2+)/Mg and Al^(3+)/Al were-485.71 kJ/mol^(-1),-480.78 kJ/mol^(-1).Finally,potentiostatic electrolysis was performed on a Mo electrode in LiCl-KCl-MgCl_(2)-AlCl_(3)(the mass ratio of MgCl_(2) to AlCl_(3) was 10:1)melt at different potentials.The components of the deposits were characterized by scanning electron microscope and energy dispersive spectroscopy.The study revealed that the content of Al in the deposit decreased as the overpotential increased and Al tended to segregate at the grain boundaries.
基金supports from the National Key Research and Development Program of China (No.2021YFC2901600)supported by the State Key Laboratory of Special Rare Metal Materials (No.SKL2020K004)。
文摘X-ray photoelectron spectroscopy(XPS)and Raman spectroscopy were used to analyze the complexes in LiCl−KCl eutectic salt containing VCl_(3) and KF.The additional fluoride ions would replace chloride ions and combine with V(Ⅲ)to form VF_(6)^(3-).The electrochemical behavior of V(Ⅲ)was evaluated under condition of the molar concentration ratio of F−to Vn+(α)equal to 0:1,1:1,2:1,5:1,20:1 and 50:1,respectively.The results showed that a new reduction step appeared:VF_(6)^(3-)→V^(2+),and the reduction mechanism of vanadium ions became more complicated.The metallic vanadium was deposited on the tungsten electrode at−2.90 V in the LiCl−KCl melts for 6 h,and the products were characterized by SEM−EDS.It was indicated that the particle size of the product decreased with adding fluoride ions for the forming of the coordination compound VF_(6)^(3-).
基金the National Natural Science Foundation of China (50204007)the Talent Foundation of Yunnan Province (2005PY01-33)Programfor New Century Excellent Talents in University (NCET-07-0387)
文摘La0.8Sr0.2Co1-yFeyO3-δ (y=0.2, 0.4, 0.6, 0.8) powders were synthesized by ethylenediamine tetraacetic acid (EDTA) complexing sol-gel process. The powders were characterized via X-ray diffraction (XRD) and scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDS). The results showed that single-phased perovskite-type oxide powders with small particle size were obtained by the process, and the compositions of the productions agreed with the designed molar ratio. The electronic conductivity and ionic conductivity of La0.8Sr0.2Co1-yFeyO3-δ were investigated by DC four-terminal method and AC impedance spectroscopy, respectively. The electronic conductivity of La0.8Sr0.2Co1-yFeyO3-δ is approximately 2~4 orders of magnitude higher than the ionic conductivity. It was confirmed that the conductivities of the materials were strongly influenced by the composition anions, temperature and sample preparing process.
基金supported by the Key Program of the National Natural Science Foundation of China (No.u0837602)the Analysis Testing Foundation of Kunming University of Science and Technology (No.2010-303)
文摘The surface properties of sphalerite (ZnS) were theoretically investigated using first principle calculations based on the density functional theory (DFT). DFT results indicate that both the (110) and the (220) surfaces of sphalerite undergo surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the sur- face, S atoms in the first surface layer move outward from the bulk (dl), whereas Zn atoms move toward the bulk (d2), forming an S-enriched surface. The values of these displacements are 0.003 nm for dl and 0.021 nm for d2 on the (110) surface, and 0.002 nm for dl and 0.011 nm for d2 on the (220) surface. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. X-ray photoelectron spectroscopic (XPS) analysis provides the evidence for the S-enriched surface. A polysulphide (S n^2- ) surface layer with a bind- ing energy of 163.21 eV is formed on the surface of sphalerite after its grinding under ambient atmosphere. This S-enriched surface and the S 2- surface layer have important influence on the flotation properties ofsphalerite. Keywords:
基金Project(u0837604) supported by United Foundation of Natural Science Foundation of China and Yunnan ProvinceProject(08Z0017) supported by the Provincial Education Department of Yunnan Province, China+1 种基金Project(2008ZC011M) supported by the Applied Fundamental Research of Yunnan Province, ChinaProject(2008-06) supported by the Scientific Research Foundation of Kunming University of Science and Technology
文摘CuO/γ-Al2O3 sorbents were prepared by means of impregnation. Thermogravimetric technique was used to study the sulfation of CuO/γ-Al2O3 sorbents. The sulfation tests were performed using gas containing 0.1%-0.9% SO2, 5% O2, 3% H2O steam, and N2 as the balance. Experimental conditions including temperature, SO2 concentration and pore structure were studied. The sulfation experiment results show that the sulfation reaction rate increases with increasing temperature and SO2 concentration, and the surface and pore volume decrease after sulfation. Sulfation kinetics analysis shows that the reaction between CuO/γ-Al2O3 and SO2 obeys pore-blocking model well. Proportionality (pore-blocking constant) 1/λ decreases with increasing temperature. The activation energy and reaction order with respect to SO2 obtained are 37.9 kJ/mol and the first order, respectively. The existing state of CuO exerts an influence on activation energy.
基金Projects(5020400750574046) supported by the National Natural Science Foundation of ChinaProject(2005PY01-33) supported by the Natural Foundation of Yunnan Province, China
文摘Ce0.8Ca0.2O1.8 (CDC82) anode material was prepared by glycine-nitrate process(GNP). Thermogravimetric(TG) analysis and differential scanning calorimetric(DSC) methods were adopted to characterize the reaction process of CDC82 material. X-ray diffractometry(XRD), scanning electron microcopy(SEM), direct current four probe (four-probe DC) and temperature process reduce(TPR) techniques were adopted to characterize the properties of CDC82 material. After the precursor was sintered at 750 ℃ for 4 h, CDC82 material with pure-fluorite structure and nanometer size was obtained. The total conductivity of CDC82 changes little with temperature in air at 50?850 ℃ , and the maximum value is 0.04 S/cm at 750 ℃ . The total conductivity wholly becomes larger when the atmosphere changes from air to hydrogen, which greatly increases with increasing temperature and reaches the maximum value of 1.09 S/cm at 850 ℃. Some impurities such as CeMg and La2O3 exist after the mixture of CDC82 anode and La1?xSrxGa1?yMgyO3?δ (LSGM) electrolyte material is sintered at 1 200 ℃ for 15 h. The CDC82 material as anode material has excellent catalytic property for hydrogen and methane.
基金supported by the New Energy and Industrial Technology Development Organization of Japan(No.A0006)
文摘An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction thermal plasmas were conducted to investigate the melting behaviour of granulated soda-lime glass powders injected into the plasma. A two-dimensional local thermodynamic equilibrium (LTE) model was performed to simulate the heat and momentum transfer between plasma and particle. Results showed that the particle temperature was strongly affected by the flow rate of carrier gas and the particle size of raw material. A higher flow rate of carrier gas led to lower particle temperature and less energy transferred to particles which resulted in lower vitrification. The incomplete melting of large particles was attributed to the lower central temperature of the particle caused by a larger heat capacity. The numerical analysis explained well the experimental results, which can provide valuable practical guidelines for the process control in the melting process for the glass industry.
基金supported by the New Energy and Industrial Technology Development Organization of Japan and the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China
文摘An innovative in-flight glass melting technology with a multi-phase AC arc plasma was developed to save energy and reduce emissions for the glass industry. The effect of the injection position on the in-flight melting behavior of granulated powders was investigated. Results show that the injection position has a strong effect on the melting behavior of alkali-free glass raw material. With the increase in injection distance, the vitrification, decomposition, and particle shrinkage of initial powders are improved. Longer injection distance causes much energy to transfer to particles due to a longer residence time of powder in the high temperature zone. The high vitrification and decomposition degrees indicate that the new in-flight melting technology with 12-phase AC arc can substantially reduce the melting and refining time for glass production.
基金the New Energy and Industrial Technology Development Organization of Japan(No.A0006)
文摘An innovative in-flight glass melting technology with induced thermal plasmas was developed for the purpose of energy conservation and environmental protection. Two-dimensional modeling was used to simulate the thermofluid fields in the plasma torch. The in-flight melting behavior of glass raw material was investigated by various analysis methods. Results showed that the plasma temperature was up to 10000 K with a maximum velocity over 30 m/s, which made it possible to melt the granulated glass raw material within milliseconds. The carbonates in the raw material decomposed completely and the compounds in the raw material attainted 100% vitrification during the in-flight time from the nozzle exit to substrate. The particle melting process is similar to the unreacted-core shrinking model.
基金the National Natural Science Foundation of China(Grant No.51804277)supported by the State Key Laboratory of Special Rare Metal Materials(No.SKL2020K004)Northwest Rare Metal Materials Research Institute.
文摘The properties of non-oxide materials are continuously revealed,and their applications in the fields of ceramics,energy,and catalysis are increasingly extensive.Regardless of the traditional binary materials or the MAX phases,the preparation methods,which are environmentally friendly,efficient,economical,and easy to scale-up,have always been the focus of attention.Molten salt synthesis has demonstrated unparalleled advantages in achieving non-oxide materials.In addition,with the development of the process in molten salt synthesis,it also shows great potential in scale-up production.In this review,the recent progress of molten salt synthesis in the preparation of binary non-oxide and MAX phase is reviewed,as well as some novel processes.The reaction mechanisms and the influence of synthetic conditions for certain materials are discussed in detail.The paper is finalized with the discussion of the application prospect and future research trends of molten salt synthesis in non-oxide materials.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1137601 and 51466005)the Science and Technology Program of Yunnan Province (Grant No.2014RD016)the Program for Innovative Research Team of Yunnan Province (Grant No. 2014HC013)
文摘LaMnO3 catalysts with three-dimensionally ordered holes perovskite structure were prepared via closepacked SiO2 template synthesized by Stober-Frink method. SEM, XRD and BET were employed to characterize the microstructure, phases and specific surface area. CV method was used to the oxygen electrode beha-vior of catalysts. Diameter of the holes was about 330 nm, corresponding to the size of SiO2 template. Full-cell discharge tests were performed on aluminum-air battery fabricated by porous LaMnO3.Results showed that the discharge performance of porous LaMnO3 were 1.54 V, 1.42 V and 1.24 V respectively when the discharge currents were set at 5 mA/cm^2,10 mA/cm^2 and 20 mA/cm^2, respectively, which were higher than that of LaMnO3 prepared by coprecipitation method(1.33 V, 1.09 V, 0.63 V, respectively).