期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Principle and engineering application of pressure relief gas drainage in low permeability outburst coal seam 被引量:15
1
作者 LIU lin CHENG Yuan-ping +2 位作者 WANG Hai-feng WANG Liang MA Xian-qin 《Mining Science and Technology》 EI CAS 2009年第3期342-345,351,共5页
With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration bo... With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration boreholes for draining of pressure relief gas.Based on the principle of overlying strata movement, deformation and pressure relief, a good effect of gas drainage was obtained.The practice in the Panyi coal mine has shown that, after mining the C11coal seam as the protective layer, the relative expansion deformation value of the protected layer C13 reached 2.63%, The permeability coefficient increased 2880 times, the gas drainage rate of the C13 coal seam increased to more than 60%, the amount of gas was reduced from 13.0 to 5.2 m3/t and the gas pressure declined from 4.4 to 0.4 MPa, which caused the danger the outbursts in the coal seams to be eliminated.The result was that we achieved a safe and highly efficient mining operation of the C13 coal seam. 展开更多
关键词 瓦斯抽放率 突出煤层 低渗透 煤与瓦斯突出 卸压 应用 工程 原理
下载PDF
Fracture evolution and pressure relief gas drainage from distant protected coal seams under an extremely thick key stratum 被引量:53
2
作者 WANG Liang CHENG Yuan-ping +2 位作者 LI Feng-rong WANG Hai-feng LIU Hai-bo 《Journal of China University of Mining and Technology》 EI 2008年第2期182-186,共5页
When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a min- ing protective seam, this extremely thick rock bed controls the movement of the entire overlying st... When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a min- ing protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drill- ing field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middle coal group, with a gas drainage radius over 100m. 展开更多
关键词 超后关键地层 保护层开采 断口面 瓦斯抽放 深井开采
下载PDF
Effect of magma intrusion on the occurrence of coal gas in the Wolonghu coalfield 被引量:11
3
作者 Jiang Jingyu Cheng Yuanping Wang Lei An Fenghua Jiang Haina 《Mining Science and Technology》 EI CAS 2011年第5期737-741,共5页
Chemical analysis, methane isothermal adsorption studies, and mercury porosimetry were performed on ten samples taken from the magma intrusion boundary in the Wolonghu coalfield. The physico-chemical properties of coa... Chemical analysis, methane isothermal adsorption studies, and mercury porosimetry were performed on ten samples taken from the magma intrusion boundary in the Wolonghu coalfield. The physico-chemical properties of coals from the magma intrusion region are compared to those from the normal regions. The results show that the volatile content (Vad), the limiting adsorption constant (a), and the initial methane diffusion rate of samples from the magma intrusion region are generally smaller than those values from samples from the normal region. The number three coal sample from the magma intrusion region has a large vitrinite reflectance, well developed macropores, a small surface area, and weak methane adsorp- tion capacity. The number ten coal sample from the normal region has a small vitrinite reflectance, well developed micropores, a large surface area, and a strong methane adsorption capacity. The maceral of the coal samples from the magma intrusion region and the normal region are similar. The coal in the area near the magma intrusion boundary is rich in methane and is an area where coal and gas outbursts often occur. 展开更多
关键词 岩浆侵入区 卧龙湖 煤田 煤气 物理化学性质 煤与瓦斯突出 吸附能力 比表面积
下载PDF
Pressure relief, gas drainage and deformation effects on an overlying coal seam induced by drilling an extra-thin protective coal seam 被引量:11
4
作者 LIU Hai-bo CHENG Yuan-ping +2 位作者 SONG Jian-cheng SHANG Zheng-jie WANG Liang 《Mining Science and Technology》 EI CAS 2009年第6期724-729,共6页
Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological ... Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%. 展开更多
关键词 煤层形变 瓦斯抽放 保护层 诱导效应 卸压 应力变形 超薄 钻探
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部