This paper proposes a distributed dynamic k-medoid clustering algorithm for wireless sensor networks (WSNs), DDKCAWSN. Different from node-clustering algorithms and protocols for WSNs, the algorithm focuses on clust...This paper proposes a distributed dynamic k-medoid clustering algorithm for wireless sensor networks (WSNs), DDKCAWSN. Different from node-clustering algorithms and protocols for WSNs, the algorithm focuses on clustering data in the network. By sending the sink clustered data instead of practical ones, the algorithm can greatly reduce the size and the time of data communication, and further save the energy of the nodes in the network and prolong the system lifetime. Moreover, the algorithm improves the accuracy of the clustered data dynamically by updating the clusters periodically such as each day. Simulation results demonstrate the effectiveness of our approach for different metrics.展开更多
基金the National Natural Science Foundation of China (60472047)
文摘This paper proposes a distributed dynamic k-medoid clustering algorithm for wireless sensor networks (WSNs), DDKCAWSN. Different from node-clustering algorithms and protocols for WSNs, the algorithm focuses on clustering data in the network. By sending the sink clustered data instead of practical ones, the algorithm can greatly reduce the size and the time of data communication, and further save the energy of the nodes in the network and prolong the system lifetime. Moreover, the algorithm improves the accuracy of the clustered data dynamically by updating the clusters periodically such as each day. Simulation results demonstrate the effectiveness of our approach for different metrics.