期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improvement in the electrical performance and bias-stress stability of dual-active-layered silicon zinc oxide/zinc oxide thin-film transistor
1
作者 刘玉荣 赵高位 +1 位作者 黎沛涛 姚若河 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期452-457,共6页
Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content o... Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress. 展开更多
关键词 thin film transistor (TFT) silicon-doped zinc oxide dual-active-layer structure bias-stress stability
下载PDF
Positive gate-bias temperature instability of ZnO thin-film transistor 被引量:2
2
作者 刘玉荣 苏晶 +1 位作者 黎沛涛 姚若河 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期602-607,共6页
The positive gate-bias temperature instability of a radio frequency (RF) sputtered ZnO thin-film transistor (ZnO TFT) is investigated. Under positive gate-bias stress, the saturation drain current and OFF-state cu... The positive gate-bias temperature instability of a radio frequency (RF) sputtered ZnO thin-film transistor (ZnO TFT) is investigated. Under positive gate-bias stress, the saturation drain current and OFF-state current decrease, and the threshold voltage shifts toward the positive direction. The stress amplitude and stress temperature are considered as important factors in threshold-voltage instability, and the time dependences of threshold voltage shift under various bias temperature stress conditions could be described by a stretched-exponential equation. Based on the analysis of hysteresis behaviors in current- voltage and capacitance-voltage characteristics before and after the gate-bias stress, it can be clarified that the threshold- voltage shift is predominantly attributed to the trapping of negative charge carriers in the defect states located at the gate- dielectric/channel interface. 展开更多
关键词 thin-film transistors (TFTs) zinc oxide gate-bias instability threshold-voltage shift
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部