Integrated multi-trophic aquaculture (IMTA) has been proposed as a concept that combines the cultivation of fed aquaculture species (e.g., finfish/shrimp) with extractive aquaculture species (e.g., shellfish/seaweed)....Integrated multi-trophic aquaculture (IMTA) has been proposed as a concept that combines the cultivation of fed aquaculture species (e.g., finfish/shrimp) with extractive aquaculture species (e.g., shellfish/seaweed). In seaweed-based integrated aquaculture, seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents on coastal ecosystems. Thus, selection of optimal species for such aquaculture is of great importance. The present study aimed to develop a seaweed species-selection index for selecting suitable species in seaweed-based integrated aquaculture system. The index was synthesized using available literature-based information, reference data, and physiological seaweed experiments to identify and prioritize the desired species. Undaria pinnatifida, Porphyra yezoensis and Ulva compressa scored the highest according to a seaweed-based integrated aquaculture suitability index (SASI). Seaweed species with the highest scores were adjudged to fit the integrated aquaculture systems. Despite the application of this model limited by local aquaculture environment, it is considered to be a useful tool for selecting seaweed species in IMTA.展开更多
Study of horizontal and vertical distributions of the N/P (nitrogen versus phosphate) atom ratio in the northern South Yellow Sea showed that the ratio varied greatly in upper waters of the investigated area and was a...Study of horizontal and vertical distributions of the N/P (nitrogen versus phosphate) atom ratio in the northern South Yellow Sea showed that the ratio varied greatly in upper waters of the investigated area and was always much greater than the theoretical Redfield ratio of 16:1 found below the thermocline zone. It was in general higher near the coast and lower in the central part. With increasing depth, the ratio became smaller and smaller. This distribution pattern is attributed to: 1) the anthropogenic influence of the surface N and P which makes the N/P ratio differ from the normal value; 2) the easy adsorption of P on particles hinders P transport to the central part; 3) below the thermocline zone, the N and P mainly come from the remineralization of the sedimented phytoplankton residues which have almost the theoretical Redfield value and; 4) the existence of the Yellow Sea Bottom Cold Water which inhibits the vertical exchange of the water.展开更多
In this paper, we consider an SIR-model for which the interaction term is the square root of the susceptible and infected individuals in the form of fractional order differential equations. First the non-negative solu...In this paper, we consider an SIR-model for which the interaction term is the square root of the susceptible and infected individuals in the form of fractional order differential equations. First the non-negative solution of the model in fractional order is presented. Then the local stability analysis of the model in fractional order is discussed. Finally, the general solutions are presented and a discrete-time finite difference scheme is constructed using the nonstandard finite difference (NSFD) method. A comparative study of the classical Runge-Kutta method and ODE45 is presented in the case of integer order derivatives. The solutions obtained are presented graphically.展开更多
When considering potential global warming projections, it is useful to understand the impact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the mult...When considering potential global warming projections, it is useful to understand the impact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the multi-model ensemble with the paleoclimate modeling intercomparison project(PMIP) models. The reconstructed winter(summer) surface air temperature at 6 kyr before present was 0.85 oC(0.21 oC) lower(higher) than the present day over Asia, 60oE-150oE, 10oN-60oN. The seasonal variation and heating differences of land and ocean in summer at 6 kyr before present might be much larger than present day. The winter and summer precipitation of 6 kyr before present were 0.067 and 0.017 mm·day-1larger than present day, respectively. The Group B climate, which means the dry climates based on K?ppen climate classification, at 6 kyr before present decreased 17% compared to present day, but the Group D which means the continental and microthermal climates at 6 kyr before present increased over 7%. Comparison between the results from the model simulation and published paleo-proxy record agrees within the limited sparse paleo-proxy record data.展开更多
基金supported by the ‘Greenhouse Gas Emissions Reduction Using Seaweeds’ programthe Jeju Sea Grant College Program funded by the Korean Ministry of Land, Transport and Maritime Affairs, Republic of Korea
文摘Integrated multi-trophic aquaculture (IMTA) has been proposed as a concept that combines the cultivation of fed aquaculture species (e.g., finfish/shrimp) with extractive aquaculture species (e.g., shellfish/seaweed). In seaweed-based integrated aquaculture, seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents on coastal ecosystems. Thus, selection of optimal species for such aquaculture is of great importance. The present study aimed to develop a seaweed species-selection index for selecting suitable species in seaweed-based integrated aquaculture system. The index was synthesized using available literature-based information, reference data, and physiological seaweed experiments to identify and prioritize the desired species. Undaria pinnatifida, Porphyra yezoensis and Ulva compressa scored the highest according to a seaweed-based integrated aquaculture suitability index (SASI). Seaweed species with the highest scores were adjudged to fit the integrated aquaculture systems. Despite the application of this model limited by local aquaculture environment, it is considered to be a useful tool for selecting seaweed species in IMTA.
文摘Study of horizontal and vertical distributions of the N/P (nitrogen versus phosphate) atom ratio in the northern South Yellow Sea showed that the ratio varied greatly in upper waters of the investigated area and was always much greater than the theoretical Redfield ratio of 16:1 found below the thermocline zone. It was in general higher near the coast and lower in the central part. With increasing depth, the ratio became smaller and smaller. This distribution pattern is attributed to: 1) the anthropogenic influence of the surface N and P which makes the N/P ratio differ from the normal value; 2) the easy adsorption of P on particles hinders P transport to the central part; 3) below the thermocline zone, the N and P mainly come from the remineralization of the sedimented phytoplankton residues which have almost the theoretical Redfield value and; 4) the existence of the Yellow Sea Bottom Cold Water which inhibits the vertical exchange of the water.
文摘In this paper, we consider an SIR-model for which the interaction term is the square root of the susceptible and infected individuals in the form of fractional order differential equations. First the non-negative solution of the model in fractional order is presented. Then the local stability analysis of the model in fractional order is discussed. Finally, the general solutions are presented and a discrete-time finite difference scheme is constructed using the nonstandard finite difference (NSFD) method. A comparative study of the classical Runge-Kutta method and ODE45 is presented in the case of integer order derivatives. The solutions obtained are presented graphically.
基金funded by the National Institute of Fisheries Science of Korea (No. RP-2016-ME-036)
文摘When considering potential global warming projections, it is useful to understand the impact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the multi-model ensemble with the paleoclimate modeling intercomparison project(PMIP) models. The reconstructed winter(summer) surface air temperature at 6 kyr before present was 0.85 oC(0.21 oC) lower(higher) than the present day over Asia, 60oE-150oE, 10oN-60oN. The seasonal variation and heating differences of land and ocean in summer at 6 kyr before present might be much larger than present day. The winter and summer precipitation of 6 kyr before present were 0.067 and 0.017 mm·day-1larger than present day, respectively. The Group B climate, which means the dry climates based on K?ppen climate classification, at 6 kyr before present decreased 17% compared to present day, but the Group D which means the continental and microthermal climates at 6 kyr before present increased over 7%. Comparison between the results from the model simulation and published paleo-proxy record agrees within the limited sparse paleo-proxy record data.