In this paper, a new predictive model, adapted to QTM (Quaternary Triangular Mesh) pixel compression, is introduced. Our approach starts with the principles of proposed predictive models based on available QTM neighbo...In this paper, a new predictive model, adapted to QTM (Quaternary Triangular Mesh) pixel compression, is introduced. Our approach starts with the principles of proposed predictive models based on available QTM neighbor pixels. An algorithm of ascertaining available QTM neighbors is also proposed. Then, the method for reducing space complexities in the procedure of predicting QTM pixel values is presented. Next, the structure for storing compressed QTM pixel is proposed. In the end, the experiment on comparing compression ratio of this method with other methods is carried out by using three wave bands data of 1 km resolution of NOAA images in China. The results indicate that: 1) the compression method performs better than any other, such as Run Length Coding, Arithmetic Coding, Huffman Cod- ing, etc; 2) the average size of compressed three wave band data based on the neighbor QTM pixel predictive model is 31.58% of the origin space requirements and 67.5% of Arithmetic Coding without predictive model.展开更多
基金Project 40471108 supported by the National Natural Science Foundation of China
文摘In this paper, a new predictive model, adapted to QTM (Quaternary Triangular Mesh) pixel compression, is introduced. Our approach starts with the principles of proposed predictive models based on available QTM neighbor pixels. An algorithm of ascertaining available QTM neighbors is also proposed. Then, the method for reducing space complexities in the procedure of predicting QTM pixel values is presented. Next, the structure for storing compressed QTM pixel is proposed. In the end, the experiment on comparing compression ratio of this method with other methods is carried out by using three wave bands data of 1 km resolution of NOAA images in China. The results indicate that: 1) the compression method performs better than any other, such as Run Length Coding, Arithmetic Coding, Huffman Cod- ing, etc; 2) the average size of compressed three wave band data based on the neighbor QTM pixel predictive model is 31.58% of the origin space requirements and 67.5% of Arithmetic Coding without predictive model.