In pursuit of higher energy density,lower cost,longer lifespan and safety,remarkable research efforts have been taken to innovate various types of energy storage materials/devices,especially metal-ion batteries such a...In pursuit of higher energy density,lower cost,longer lifespan and safety,remarkable research efforts have been taken to innovate various types of energy storage materials/devices,especially metal-ion batteries such as Li-ion batteries(LIBs).One of the major challenges is to elucidate the working mechanisms and/or the controlling factors of any new material in a full battery,which requires adequate characterization/diagnosis techniques.Among the numerous electrochemical ex-situ and insitu characterization techniques,magnetic resonance techniques,including nuclear magnetic resonance(NMR),magnetic resonance imaging(MRI)and electron paramagnetic resonance(EPR),are unique in terms of providing structural information at the atomic level and real-time phase and morphology evolution and characterizing ionic motion at various timescales.This special issue is dedicated to an editorial and a selection of papers on the theme of investigating energy storage materials/devices using magnetic resonance techniques.As the guest editors of this special issue,we are honored to introduce the following high-quality research articles and review articles.展开更多
文摘In pursuit of higher energy density,lower cost,longer lifespan and safety,remarkable research efforts have been taken to innovate various types of energy storage materials/devices,especially metal-ion batteries such as Li-ion batteries(LIBs).One of the major challenges is to elucidate the working mechanisms and/or the controlling factors of any new material in a full battery,which requires adequate characterization/diagnosis techniques.Among the numerous electrochemical ex-situ and insitu characterization techniques,magnetic resonance techniques,including nuclear magnetic resonance(NMR),magnetic resonance imaging(MRI)and electron paramagnetic resonance(EPR),are unique in terms of providing structural information at the atomic level and real-time phase and morphology evolution and characterizing ionic motion at various timescales.This special issue is dedicated to an editorial and a selection of papers on the theme of investigating energy storage materials/devices using magnetic resonance techniques.As the guest editors of this special issue,we are honored to introduce the following high-quality research articles and review articles.