Artificial neural networks are trained to forecast the plasma disruption in HL-2A tokamak. Optimized network architecture is obtained. Saliency analysis is made to assess the relative importance of different diagnosti...Artificial neural networks are trained to forecast the plasma disruption in HL-2A tokamak. Optimized network architecture is obtained. Saliency analysis is made to assess the relative importance of different diagnostic signals as network input. The trained networks can successfully detect the disruptive pulses of HL-2A tokamak. The results obtained show the possibility of developing a neural network predictor that intervenes well in advance for avoiding plasma disruption or mitigating its effects.展开更多
Density modulation experiments are powerful experimental schemes for the study of particle transport. The diffusion coefficients (D) and convection velocity (V), which cannot be evaluated from the particle balance...Density modulation experiments are powerful experimental schemes for the study of particle transport. The diffusion coefficients (D) and convection velocity (V), which cannot be evaluated from the particle balance in the equilibrium state, can be obtained separately. Further, the estimated values of D and V are determined independent of the absolute value of the particle source rate, which is difficult to obtain experimentally. However, the sensitivities and interpretation of D and V from the modulation experiments need to be considered. This paper describes numerical techniques for solving the particle balance equation of the modulation components. Examples of the analysis are shown regarding the data of LHD experiments, and the results of the modulation experiments are discussed.展开更多
The toroidal component of the velocity for geodesic acoustic modes(GAMs)is first demonstrated.Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study.A significant peak at...The toroidal component of the velocity for geodesic acoustic modes(GAMs)is first demonstrated.Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study.A significant peak at the GAM frequency is observed in Mach number fluctuations.The toroidal velocity for the GAMs is estimated as 10–100 ms-1 and increases with the poloidal velocity.The ratio of toroidal component to the poloidal one of the velocity is mainly located in the interval between 0.3 and 1.0.With higher safety factors q,the ratio almost does not change with decreasing the safety factor,whereas it goes up sharply at low q.The coherencies between poloidal electric fields and Mach number fluctuations in turbulence frequency bands are also evaluated,and are higher than those between radial electric fields and Mach number fluctuations.展开更多
On the Large Helical Device (LHD) where nested magnetic surfaces are surrounded by the ergodic field layer, edge transport barrier (ETB) was produced in neutral-beam-injection (NBI) heated plasmas through transi...On the Large Helical Device (LHD) where nested magnetic surfaces are surrounded by the ergodic field layer, edge transport barrier (ETB) was produced in neutral-beam-injection (NBI) heated plasmas through transition and non-transition processes. The former case is the ETB formation by L-Htransition, where characteristics of L-H transition observed in a tokamak plasma are clearly recognized. The confinement improvement is the modest (- 10%), compared with the ISS95 international stellarator scaling. The threshold power for the transition is comparable or slightly lower than the ITER scaling law established by tokamaks and compact tori. The ETB is formed inside the ergodic field layer of the vacuum field. The ETB formation destabilizes edge coherent modes such as m/n = 1/1, 2/3 and 1/2, of which rational surfaces are in the magnetic hill. The formed ETB is partially and transiently destroyed by these coherent edge MHD modes and edge localized modes (ELMs) typically observed in Ha signals. The latter ETB is observed in a plasma with large reversed NBI-driven current more than 100 kA at Bt = 1 T. In these plasmas, the edge magnetic shear is enhanced by the current and the rotational transform in the core region is expected to be appreciably reduced. Thus reduced rotational transform in the plasma central region will enhance outward heat and particle fluxes toward ergodic edge layer. The ETB with steep electron temperature gradient up to - 5 keV/m is formed by blocking enhanced outward heat flux.展开更多
The preparation for an experimental soft x-ray tomography study on the Heliotron J (H-J) machine is carried out,with the objectives of evaluating the capability of the current soft x-ray tomographic system in terms of...The preparation for an experimental soft x-ray tomography study on the Heliotron J (H-J) machine is carried out,with the objectives of evaluating the capability of the current soft x-ray tomographic system in terms of the identification of different mode structures and their poloidal rotation,and the axis shift with different plasma and machine parameters,and fixing the physics goals for the experimental study.These preparations were carried out via a simulated soft x-ray data set arising from different plasma conditions,such as magnetic islands,low beta and high beta.Soft x-ray tomography (SXT) is performed by the discrete pixel method including singular value decomposition and Phillips-Tikhonov regularization,to obtain clear and smooth images.The H-J soft x-ray tomography results from simulated soft x-rays for the equilibrium H-J plasma sensed the magnetic axis shift clearly and an estimate was also achieved.Successful reconstruction for mode structure m =1/n =1 was obtained along with the realization of the poloidal rotation of the structure.The reconstruction for the m =2/n =1 mode was not very clear for the current soft x-ray diagnostic design.Effective mode identification was not possible due to the lack of measurements.The SXT from the current soft x-ray diagnostic on H-J,the magnetic axis shift can be estimated and the m =1/n =1 mode can be studied.Study of higher poloidal modes is difficult with the current design.展开更多
A repetitive pellet injector has been developed for investigation ofrefueling issues towards the steady-state operation in Large Helical Device (LHD). Continuousoperation of more than 10000 pellet launching at 10 Hz h...A repetitive pellet injector has been developed for investigation ofrefueling issues towards the steady-state operation in Large Helical Device (LHD). Continuousoperation of more than 10000 pellet launching at 10 Hz has been demonstrated. The maximum repeatingrate is 11 Hz. No technical constraint for longer operation has been found. The reliability ofpellet launch has exceeded 99.9%. The initial application to the NBI-heated plasmas has beensuccessful in the last experimental campaign of LHD. Although the pulse length is limited by theoperational constraint of NBI, the plasma with a density of 8 X 10^(19) m^(-3) has been sustainedfor 2 s by the pellet injection at 10 Hz. A prospect for the future experiment is discussed on thebasis of the initial result.展开更多
Electron orbits under the external vertical field (Bv) and the self poloidal field of the toroidal plasma current in a toroidal geometry are investigated by using analytic model fields in order to search for the con...Electron orbits under the external vertical field (Bv) and the self poloidal field of the toroidal plasma current in a toroidal geometry are investigated by using analytic model fields in order to search for the conditions of occurence of appropriate confinement asymmetry of fast electrons along the field lines. This asymmetry efficiently and quickly generates a toroidal current, which may close the field lines in ECH-started plasmas. It is analytically shown that the characteristics of confinement asymmetry depend on the product of the major radius and the strength of the external vertical field. The results suggest that in large devices By should be lowered and also some artificial means to speed up the pitch angle scattering for the fast electrons at a higher energy range are beneficial to generate the toroidal current in order to close the filed展开更多
A detailed study of the divertor performance in EAST has been performed for both its double null (DN) and single null (SN) configurations. The results of application of the SOLPS (B2-Eirene) code package to the ...A detailed study of the divertor performance in EAST has been performed for both its double null (DN) and single null (SN) configurations. The results of application of the SOLPS (B2-Eirene) code package to the analysis of the EAST divertor are summarized. In this work, we concentrate on the effects of increased geometrical closure and of magnetic topology variation on the scrape-off layer (SOL) and divertor plasma behavior. The results of numerical predictions for the EAST divertor operational window are also described in this paper. A simple Core-SOL- Divertor (C-S-D) model was applied to investigate the possibility of extending plasma operational space of low hybrid current drive (LHCD) experiments for EAST.展开更多
A cylindrical carbon pellet with a size of 1.2L x 1.2φ mm to 1.8L x 1.8φ mm and a velocity of 100 m/s to 300 m/s was injected into large helical device (LHD) for an efficient fueling based on its deeper deposition...A cylindrical carbon pellet with a size of 1.2L x 1.2φ mm to 1.8L x 1.8φ mm and a velocity of 100 m/s to 300 m/s was injected into large helical device (LHD) for an efficient fueling based on its deeper deposition instead of hydrogen gas puffing and ice pellet injection. Electron density increment of Ane = 10^14 cm^-3 is successfully obtained by single carbon pellet injection without plasma collapse. Typical density and temperature of the ablation plasma of the carbon pellet, e.g., 6.5× 10^16 cm^-3 and 2.5 eV for CII, are examined respectively by spectroscopic method. A confinement improvement up to 50% compared to ISS-95 stellarator scaling is clearly observed in a relatively low-density regime of ne = 2 × 10^13 cm^-3 to 4×10^13 cm^-3, and high ion temperature Ti(0) of about 6 keV is also observed with an internal transport barrier at ne = 1.2 × 10^13 cm^-3. In particular, the improvement in the ion temperature largely exceeds that observed in hydrogen gas-puffed discharges, which typically ranges below 3 keV.展开更多
In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is unde...In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is under evaluation as a real-time wall conditioning technique.In the LHD,which is a large-sized heliotron device,an additional helium(He)glow discharge cleaning(GDC)after boronization was operated for a reduction in hydrogen recycling from the coated boron layers.This operational time of 3 h was determined by spectroscopic data during glow discharges.A flat hydrogen profile is obtained on the top surface of the coated boron on the specimen exposed to boronization.The results suggest a reduction in hydrogen at the top surface by He-GDC.Trapped oxygen in coated boron was obtained by boronization,and the coated boron,which has boron-oxide,on the first wall by B-IPD was also shown.Considering the difference in coating areas between B2H6 boronization and B-IPD operation,it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning.展开更多
In the Large Helical Device (LHD), two different divertor configurations, i.e. helical divertor (HD) and local island divertor (LID), are utilized to control the edge plasma. The HD with two X-points is an intri...In the Large Helical Device (LHD), two different divertor configurations, i.e. helical divertor (HD) and local island divertor (LID), are utilized to control the edge plasma. The HD with two X-points is an intrinsic divertor for heliotron devices, accompanied with a relatively thick ergodic layer outside the confinement region. Edge and divertor plasma behavior from low density to high density regimes is presented, referring to the divertor detachment. The effect of the ergodic layer on the edge transport is also discussed. On the other hand, the LID is an advanced divertor concept which realizes a high pumping efficiency by the combination of an externally induced magnetic island and a closed pumping system. Experimental results to confirm the fundamental divertor performance of the LID are presented.展开更多
A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 10^19 m^-3 and T10 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and avera...A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 10^19 m^-3 and T10 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 G J, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.展开更多
MHD stability of the Large Helical Device (LHD) plasmas produced with intenseneutral beam injection is experimentally studied. When the steep pressure gradient near the edge isproduced through L-H transition or linear...MHD stability of the Large Helical Device (LHD) plasmas produced with intenseneutral beam injection is experimentally studied. When the steep pressure gradient near the edge isproduced through L-H transition or linear density ramp experiment, interchange-like MHD modes whoserational surface is located very close to the last closed flux surface are strongly excited in acertain discharge condition and affect the plasma transport appreciably. In NBI-heated plasmasproduced at low toroidal field, various Alfven eigenmodes are often excited. Bursting toroidalAlfven egenmodes excited by the presence of energetic ions induce appreciable amount of energeticion loss, but also trigger the formation of internal and edge transport barriers.展开更多
A 1 m vacuum ultraviolet (VUV) spectrometer with temporal and spatial resolution was developed for impurity study of HL-2A tokamak. The instrument is equipped with two concave gratings blazed at 80 nm and 150 nm, re...A 1 m vacuum ultraviolet (VUV) spectrometer with temporal and spatial resolution was developed for impurity study of HL-2A tokamak. The instrument is equipped with two concave gratings blazed at 80 nm and 150 nm, respectively, and a windowless back-illuminated charge coupled device (CCD) detector of 256 × 1024 pixels. Tile total wavelength coverage of spectrometer is 30~ 320 nm with a spectral resolution of 0.015 nm at a width of entrance slit of 10 μm. A portion of this range is observed during a plasma discharge with a spectral range of 20 nm. The minimum integration time of the detector system is about 6.7 ms for each frame in a full binning mode. Using a space-resolved slit located between the entrance slit and the grating a radial profile on the vertical direction with a range of 400 mm can be obtained. The primary results were successfully obtained with high signal-to-noise ratio and good spectral resolution, which demonstrated the instrument functions very well.展开更多
In the large helical device (LHD) having three dimensional configuration, Alfven eigenmodes (AEs) destabilized by energetic ions are widely investigated using neutral beam heated plasmas with monotonic and non-mon...In the large helical device (LHD) having three dimensional configuration, Alfven eigenmodes (AEs) destabilized by energetic ions are widely investigated using neutral beam heated plasmas with monotonic and non-monotonic rotational transform (l/2π) profiles. In a plasma with monotonic l/2π-profile, core-localized toroidicity-induced Alfven eigenmode (TAE) as well as global one are often observed. With the increase in the averaged toroidal beta value, defined as the ratio of total plasma pressure to toroidal magnetic pressure, core-localized TAE with low toroidal mode number becomes global. In a relatively high beta plasma with monotonic l/2π-profile, two TAEs with different toroidal mode number often interact nonlinearly and generate another modes through three wave coupling. In a plasma with non-monotonic l/2π-profile generated by intense counter neutral beam current drive, reversed shear Alfven eigenmode (RSAE) and geodesic acoustic mode (CAM) excited by energetic ions were observed for the first time in a helical plasma. Nonlinear coupling was also observed between RSAE and GAM.展开更多
The efficiency of energetic ion confinement is reduced in a tokamak plasma by the non-axisymmetric field, namely the ripple field. The ripple field is produced by a finite number of toroidal field coils. It is affecte...The efficiency of energetic ion confinement is reduced in a tokamak plasma by the non-axisymmetric field, namely the ripple field. The ripple field is produced by a finite number of toroidal field coils. It is affected by the non-axisymmetric finite beta effect. The three-dimensional MHD equilibrium calculation code VMEC is used to analyze the non-axisymmetric finite beta effect in a ripple tokamak. In the VMEC code, the flux coordinates are used, so the calculation region is limited to the area of plasma. To calculate the orbit outside the plasma, we develop a field calculation code, which is based on the Biot-Savart law. The details of the method and results are described in this paper.展开更多
A simple Core-SOL-Divertor (C-S-D) model has been developed to investigate qualitatively the overall features of the operational space for the integrated core and edge plasma. To construct the simple C-S-D model, a ...A simple Core-SOL-Divertor (C-S-D) model has been developed to investigate qualitatively the overall features of the operational space for the integrated core and edge plasma. To construct the simple C-S-D model, a simple core plasma model of ITER physics guidelines and a two-point SOL-divertor model are used. The simple C-S-D model is applied to the study of the EAST operational space with lower hybrid current drive experiments under various kinds of trade-off for the basic plasma parameters. Effective methods for extending the operational space are also presented, From this study for the EAST operational space, it is evident that the C-S-D model is a useful tool for understanding qualitatively the overall features of the plasma operational space.展开更多
Extreme ultraviolet(EUV) spectra emitted from low-Z impurity ions in the wavelength range of10–500Å were observed in Experimental Advanced Superconducting Tokamak(EAST)discharges. Several spectral lines from K-a...Extreme ultraviolet(EUV) spectra emitted from low-Z impurity ions in the wavelength range of10–500Å were observed in Experimental Advanced Superconducting Tokamak(EAST)discharges. Several spectral lines from K-and L-shell partially ionized ions were successfully observed with sufficient spectral intensities and resolutions for helium, lithium, boron, carbon,oxygen, neon, silicon and argon using two fast-time-response EUV spectrometers of which the spectral intensities are absolutely calibrated based on the intensity comparison method between visible and EUV bremsstrahlung continua. The wavelength is carefully calibrated using wellknown spectra. The lithium, boron and silicon are individually introduced for the wall coating of the EAST vacuum vessel to suppress mainly the hydrogen and oxygen influxes from the vacuum wall, while the carbon and oxygen intrinsically exist in the plasma. The helium is frequently used as the working gas as well as the deuterium. The neon and argon are also often used for the radiation cooling of edge plasma to reduce the heat flux onto the divertor plate. The measured spectra were analyzed mainly based on the database of National Institute of Standards and Technology. As a result, spectral lines of He Ⅱ, Li Ⅱ–Ⅲ, B Ⅳ–Ⅴ, C Ⅲ–Ⅵ, O Ⅲ–Ⅷ, Ne Ⅱ–Ⅹ,Si Ⅴ–Ⅻ, and Ar Ⅹ–XVI are identified in EAST plasmas of which the central electron temperature and chord-averaged electron density range in Te0=0.6–2.8 keV and ne=(0.5–6.0)×1019 m-3, respectively. The wavelengths and transitions of EUV lines identified here are summarized and listed in a table for each impurity species as the database for EUV spectroscopy using fusion plasmas.展开更多
基金Project supported by the National Natural Science Foundations of China (Grant No 10775040) and partially by JSPS-CAS Core University Program on Plasma and Nuclear Fusion.Acknowledgments The authors take this opportunity to express their sincere thanks to Q. D. Gao for his continuing encouragement and support. They gratefully acknowledge Y. Liu, B. B. Feng and F. Z. Li for fruitful discussions. Finally, the authors thank the entire HL-2A team for supplying the experimental data.
文摘Artificial neural networks are trained to forecast the plasma disruption in HL-2A tokamak. Optimized network architecture is obtained. Saliency analysis is made to assess the relative importance of different diagnostic signals as network input. The trained networks can successfully detect the disruptive pulses of HL-2A tokamak. The results obtained show the possibility of developing a neural network predictor that intervenes well in advance for avoiding plasma disruption or mitigating its effects.
基金supported in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘Density modulation experiments are powerful experimental schemes for the study of particle transport. The diffusion coefficients (D) and convection velocity (V), which cannot be evaluated from the particle balance in the equilibrium state, can be obtained separately. Further, the estimated values of D and V are determined independent of the absolute value of the particle source rate, which is difficult to obtain experimentally. However, the sensitivities and interpretation of D and V from the modulation experiments need to be considered. This paper describes numerical techniques for solving the particle balance equation of the modulation components. Examples of the analysis are shown regarding the data of LHD experiments, and the results of the modulation experiments are discussed.
基金supported by National Natural Science Foundation of China(Nos.12075057,11775069,11320101005,51821005 and 11875020)Jiangxi Provincial Natural Science Foundation(No.20202ACBL201002)+1 种基金Doctoral Foundation(Nos.DHBK2017134 and DHBK 2018059)Grant-in-Aid for Scientific Research of JSPS(Nos.15H02155,15H02335,16H02442)。
文摘The toroidal component of the velocity for geodesic acoustic modes(GAMs)is first demonstrated.Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study.A significant peak at the GAM frequency is observed in Mach number fluctuations.The toroidal velocity for the GAMs is estimated as 10–100 ms-1 and increases with the poloidal velocity.The ratio of toroidal component to the poloidal one of the velocity is mainly located in the interval between 0.3 and 1.0.With higher safety factors q,the ratio almost does not change with decreasing the safety factor,whereas it goes up sharply at low q.The coherencies between poloidal electric fields and Mach number fluctuations in turbulence frequency bands are also evaluated,and are higher than those between radial electric fields and Mach number fluctuations.
基金supported in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion and the JSPS Grant-in-Aid for Exploratory Research(No.6656287)
文摘On the Large Helical Device (LHD) where nested magnetic surfaces are surrounded by the ergodic field layer, edge transport barrier (ETB) was produced in neutral-beam-injection (NBI) heated plasmas through transition and non-transition processes. The former case is the ETB formation by L-Htransition, where characteristics of L-H transition observed in a tokamak plasma are clearly recognized. The confinement improvement is the modest (- 10%), compared with the ISS95 international stellarator scaling. The threshold power for the transition is comparable or slightly lower than the ITER scaling law established by tokamaks and compact tori. The ETB is formed inside the ergodic field layer of the vacuum field. The ETB formation destabilizes edge coherent modes such as m/n = 1/1, 2/3 and 1/2, of which rational surfaces are in the magnetic hill. The formed ETB is partially and transiently destroyed by these coherent edge MHD modes and edge localized modes (ELMs) typically observed in Ha signals. The latter ETB is observed in a plasma with large reversed NBI-driven current more than 100 kA at Bt = 1 T. In these plasmas, the edge magnetic shear is enhanced by the current and the rotational transform in the core region is expected to be appreciably reduced. Thus reduced rotational transform in the plasma central region will enhance outward heat and particle fluxes toward ergodic edge layer. The ETB with steep electron temperature gradient up to - 5 keV/m is formed by blocking enhanced outward heat flux.
文摘The preparation for an experimental soft x-ray tomography study on the Heliotron J (H-J) machine is carried out,with the objectives of evaluating the capability of the current soft x-ray tomographic system in terms of the identification of different mode structures and their poloidal rotation,and the axis shift with different plasma and machine parameters,and fixing the physics goals for the experimental study.These preparations were carried out via a simulated soft x-ray data set arising from different plasma conditions,such as magnetic islands,low beta and high beta.Soft x-ray tomography (SXT) is performed by the discrete pixel method including singular value decomposition and Phillips-Tikhonov regularization,to obtain clear and smooth images.The H-J soft x-ray tomography results from simulated soft x-rays for the equilibrium H-J plasma sensed the magnetic axis shift clearly and an estimate was also achieved.Successful reconstruction for mode structure m =1/n =1 was obtained along with the realization of the poloidal rotation of the structure.The reconstruction for the m =2/n =1 mode was not very clear for the current soft x-ray diagnostic design.Effective mode identification was not possible due to the lack of measurements.The SXT from the current soft x-ray diagnostic on H-J,the magnetic axis shift can be estimated and the m =1/n =1 mode can be studied.Study of higher poloidal modes is difficult with the current design.
文摘A repetitive pellet injector has been developed for investigation ofrefueling issues towards the steady-state operation in Large Helical Device (LHD). Continuousoperation of more than 10000 pellet launching at 10 Hz has been demonstrated. The maximum repeatingrate is 11 Hz. No technical constraint for longer operation has been found. The reliability ofpellet launch has exceeded 99.9%. The initial application to the NBI-heated plasmas has beensuccessful in the last experimental campaign of LHD. Although the pulse length is limited by theoperational constraint of NBI, the plasma with a density of 8 X 10^(19) m^(-3) has been sustainedfor 2 s by the pellet injection at 10 Hz. A prospect for the future experiment is discussed on thebasis of the initial result.
文摘Electron orbits under the external vertical field (Bv) and the self poloidal field of the toroidal plasma current in a toroidal geometry are investigated by using analytic model fields in order to search for the conditions of occurence of appropriate confinement asymmetry of fast electrons along the field lines. This asymmetry efficiently and quickly generates a toroidal current, which may close the field lines in ECH-started plasmas. It is analytically shown that the characteristics of confinement asymmetry depend on the product of the major radius and the strength of the external vertical field. The results suggest that in large devices By should be lowered and also some artificial means to speed up the pitch angle scattering for the fast electrons at a higher energy range are beneficial to generate the toroidal current in order to close the filed
基金supported by Chinese National Natural Science Foundation(No.10135020)the JSPS-CAS Core-University Program on Plasma and Nuclear Fusion
文摘A detailed study of the divertor performance in EAST has been performed for both its double null (DN) and single null (SN) configurations. The results of application of the SOLPS (B2-Eirene) code package to the analysis of the EAST divertor are summarized. In this work, we concentrate on the effects of increased geometrical closure and of magnetic topology variation on the scrape-off layer (SOL) and divertor plasma behavior. The results of numerical predictions for the EAST divertor operational window are also described in this paper. A simple Core-SOL- Divertor (C-S-D) model was applied to investigate the possibility of extending plasma operational space of low hybrid current drive (LHCD) experiments for EAST.
文摘A cylindrical carbon pellet with a size of 1.2L x 1.2φ mm to 1.8L x 1.8φ mm and a velocity of 100 m/s to 300 m/s was injected into large helical device (LHD) for an efficient fueling based on its deeper deposition instead of hydrogen gas puffing and ice pellet injection. Electron density increment of Ane = 10^14 cm^-3 is successfully obtained by single carbon pellet injection without plasma collapse. Typical density and temperature of the ablation plasma of the carbon pellet, e.g., 6.5× 10^16 cm^-3 and 2.5 eV for CII, are examined respectively by spectroscopic method. A confinement improvement up to 50% compared to ISS-95 stellarator scaling is clearly observed in a relatively low-density regime of ne = 2 × 10^13 cm^-3 to 4×10^13 cm^-3, and high ion temperature Ti(0) of about 6 keV is also observed with an internal transport barrier at ne = 1.2 × 10^13 cm^-3. In particular, the improvement in the ion temperature largely exceeds that observed in hydrogen gas-puffed discharges, which typically ranges below 3 keV.
基金supported by NIFS budgets,KOBF031,ULFF004,KUHR032partly supported by JSPS KAKENHI 18K04999+2 种基金JSPS-CAS Bilateral Joint Research Projects,“Control of wall recycling on metallic plasma-facing materials in fusion reactor”2019-2022,(No.GJHZ201984)the Chinese Academy of Sciences President’s International Fellowship Initiative Grant No.2024VMB0003 in FY2023the U.S.Department Of Energy under Contract No.DE-AC02-09CH11466 with Princeton University。
文摘In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is under evaluation as a real-time wall conditioning technique.In the LHD,which is a large-sized heliotron device,an additional helium(He)glow discharge cleaning(GDC)after boronization was operated for a reduction in hydrogen recycling from the coated boron layers.This operational time of 3 h was determined by spectroscopic data during glow discharges.A flat hydrogen profile is obtained on the top surface of the coated boron on the specimen exposed to boronization.The results suggest a reduction in hydrogen at the top surface by He-GDC.Trapped oxygen in coated boron was obtained by boronization,and the coated boron,which has boron-oxide,on the first wall by B-IPD was also shown.Considering the difference in coating areas between B2H6 boronization and B-IPD operation,it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning.
基金supported by NIFS under Grant(No.NIFS05ULPP506)in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘In the Large Helical Device (LHD), two different divertor configurations, i.e. helical divertor (HD) and local island divertor (LID), are utilized to control the edge plasma. The HD with two X-points is an intrinsic divertor for heliotron devices, accompanied with a relatively thick ergodic layer outside the confinement region. Edge and divertor plasma behavior from low density to high density regimes is presented, referring to the divertor detachment. The effect of the ergodic layer on the edge transport is also discussed. On the other hand, the LID is an advanced divertor concept which realizes a high pumping efficiency by the combination of an externally induced magnetic island and a closed pumping system. Experimental results to confirm the fundamental divertor performance of the LID are presented.
基金supported in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 10^19 m^-3 and T10 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 G J, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.
基金The project supported by the Core-University Program between Japan and China on Plasmas and Nuclear Fusion, and a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science
文摘MHD stability of the Large Helical Device (LHD) plasmas produced with intenseneutral beam injection is experimentally studied. When the steep pressure gradient near the edge isproduced through L-H transition or linear density ramp experiment, interchange-like MHD modes whoserational surface is located very close to the last closed flux surface are strongly excited in acertain discharge condition and affect the plasma transport appreciably. In NBI-heated plasmasproduced at low toroidal field, various Alfven eigenmodes are often excited. Bursting toroidalAlfven egenmodes excited by the presence of energetic ions induce appreciable amount of energeticion loss, but also trigger the formation of internal and edge transport barriers.
基金National Natural Science Foundation of China(No.10475022)
文摘A 1 m vacuum ultraviolet (VUV) spectrometer with temporal and spatial resolution was developed for impurity study of HL-2A tokamak. The instrument is equipped with two concave gratings blazed at 80 nm and 150 nm, respectively, and a windowless back-illuminated charge coupled device (CCD) detector of 256 × 1024 pixels. Tile total wavelength coverage of spectrometer is 30~ 320 nm with a spectral resolution of 0.015 nm at a width of entrance slit of 10 μm. A portion of this range is observed during a plasma discharge with a spectral range of 20 nm. The minimum integration time of the detector system is about 6.7 ms for each frame in a full binning mode. Using a space-resolved slit located between the entrance slit and the grating a radial profile on the vertical direction with a range of 400 mm can be obtained. The primary results were successfully obtained with high signal-to-noise ratio and good spectral resolution, which demonstrated the instrument functions very well.
基金LHD project budget of Japan (NIFS08ULHH508)the Grant-in-aid for Scientific Research from MEST of Japan (No.16082209)the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘In the large helical device (LHD) having three dimensional configuration, Alfven eigenmodes (AEs) destabilized by energetic ions are widely investigated using neutral beam heated plasmas with monotonic and non-monotonic rotational transform (l/2π) profiles. In a plasma with monotonic l/2π-profile, core-localized toroidicity-induced Alfven eigenmode (TAE) as well as global one are often observed. With the increase in the averaged toroidal beta value, defined as the ratio of total plasma pressure to toroidal magnetic pressure, core-localized TAE with low toroidal mode number becomes global. In a relatively high beta plasma with monotonic l/2π-profile, two TAEs with different toroidal mode number often interact nonlinearly and generate another modes through three wave coupling. In a plasma with non-monotonic l/2π-profile generated by intense counter neutral beam current drive, reversed shear Alfven eigenmode (RSAE) and geodesic acoustic mode (CAM) excited by energetic ions were observed for the first time in a helical plasma. Nonlinear coupling was also observed between RSAE and GAM.
基金performed with the support and backing of the NIFS Collaborative Research Program
文摘The efficiency of energetic ion confinement is reduced in a tokamak plasma by the non-axisymmetric field, namely the ripple field. The ripple field is produced by a finite number of toroidal field coils. It is affected by the non-axisymmetric finite beta effect. The three-dimensional MHD equilibrium calculation code VMEC is used to analyze the non-axisymmetric finite beta effect in a ripple tokamak. In the VMEC code, the flux coordinates are used, so the calculation region is limited to the area of plasma. To calculate the orbit outside the plasma, we develop a field calculation code, which is based on the Biot-Savart law. The details of the method and results are described in this paper.
基金supported in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusionalso carried out as a joint project under the Facility Utilization Program of JAERI.
文摘A simple Core-SOL-Divertor (C-S-D) model has been developed to investigate qualitatively the overall features of the operational space for the integrated core and edge plasma. To construct the simple C-S-D model, a simple core plasma model of ITER physics guidelines and a two-point SOL-divertor model are used. The simple C-S-D model is applied to the study of the EAST operational space with lower hybrid current drive experiments under various kinds of trade-off for the basic plasma parameters. Effective methods for extending the operational space are also presented, From this study for the EAST operational space, it is evident that the C-S-D model is a useful tool for understanding qualitatively the overall features of the plasma operational space.
基金supported by National Key Research and Development Program of China(Nos.2018YFE0311100,2017YFE0300402,2017YFE0301300)National Natural Science Foundation of China(Nos.Nos.11905146,11775269,U1832126,11805133)+1 种基金Hefei Science Center High-end User Development Fund Project(2019HSCUE014)Chinese Academy of Sciences President’s International Fellowship Initiative(PIFI)(2020VMA0001)。
文摘Extreme ultraviolet(EUV) spectra emitted from low-Z impurity ions in the wavelength range of10–500Å were observed in Experimental Advanced Superconducting Tokamak(EAST)discharges. Several spectral lines from K-and L-shell partially ionized ions were successfully observed with sufficient spectral intensities and resolutions for helium, lithium, boron, carbon,oxygen, neon, silicon and argon using two fast-time-response EUV spectrometers of which the spectral intensities are absolutely calibrated based on the intensity comparison method between visible and EUV bremsstrahlung continua. The wavelength is carefully calibrated using wellknown spectra. The lithium, boron and silicon are individually introduced for the wall coating of the EAST vacuum vessel to suppress mainly the hydrogen and oxygen influxes from the vacuum wall, while the carbon and oxygen intrinsically exist in the plasma. The helium is frequently used as the working gas as well as the deuterium. The neon and argon are also often used for the radiation cooling of edge plasma to reduce the heat flux onto the divertor plate. The measured spectra were analyzed mainly based on the database of National Institute of Standards and Technology. As a result, spectral lines of He Ⅱ, Li Ⅱ–Ⅲ, B Ⅳ–Ⅴ, C Ⅲ–Ⅵ, O Ⅲ–Ⅷ, Ne Ⅱ–Ⅹ,Si Ⅴ–Ⅻ, and Ar Ⅹ–XVI are identified in EAST plasmas of which the central electron temperature and chord-averaged electron density range in Te0=0.6–2.8 keV and ne=(0.5–6.0)×1019 m-3, respectively. The wavelengths and transitions of EUV lines identified here are summarized and listed in a table for each impurity species as the database for EUV spectroscopy using fusion plasmas.