期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of atractylenolide Ⅲ on zearalenone-induced Snail1-mediated epithelial–mesenchymal transition in porcine intestinal epithelium
1
作者 Na Yeon Kim Myoung Ok Kim +4 位作者 Sangsu Shin Woo‑Sung Kwon Bomi Kim Joon Yeop Lee Sang In Lee 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2081-2092,共12页
Background The intestinal epithelium performs essential physiological functions,such as nutrient absorption,and acts as a barrier to prevent the entry of harmful substances.Mycotoxins are prevalent contaminants found ... Background The intestinal epithelium performs essential physiological functions,such as nutrient absorption,and acts as a barrier to prevent the entry of harmful substances.Mycotoxins are prevalent contaminants found in ani-mal feed that exert harmful effects on the health of livestock.Zearalenone(ZEA)is produced by the Fusarium genus and induces gastrointestinal dysfunction and disrupts the health and immune system of animals.Here,we evaluated the molecular mechanisms that regulate the effects of ZEA on the porcine intestinal epithelium.Results Treatment of IPEC-J2 cells with ZEA decreased the expression of E-cadherin and increased the expression of Snai1 and Vimentin,which induced Snail1-mediated epithelial-to-mesenchymal transition(EMT).In addition,ZEA induces Snail-mediated EMT through the activation of TGF-βsignaling.The treatment of IPEC-J2 cells with atractyle-nolideⅢ,which were exposed to ZEA,alleviated EMT.Conclusions Our findings provide insights into the molecular mechanisms of ZEA toxicity in porcine intestinal epi-thelial cells and ways to mitigate it. 展开更多
关键词 Atractylenolide III Epithelial–mesenchymal transition IPEC-J2 cells SNAIL TGF-beta signaling ZEARALENONE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部