AIM:To support probe-based confocal laser endomi-croscopy (pCLE) diagnosis by designing software for the automated classification of colonic polyps. METHODS:Intravenous fluorescein pCLE imaging of colorectal lesions w...AIM:To support probe-based confocal laser endomi-croscopy (pCLE) diagnosis by designing software for the automated classification of colonic polyps. METHODS:Intravenous fluorescein pCLE imaging of colorectal lesions was performed on patients under-going screening and surveillance colonoscopies, followed by polypectomies. All resected specimens were reviewed by a reference gastrointestinal pathologist blinded to pCLE information. Histopathology was used as the criterion standard for the differentiation between neoplastic and non-neoplastic lesions. The pCLE video sequences, recorded for each polyp, were analyzed off-line by 2 expert endoscopists who were blinded to the endoscopic characteristics and histopathology. These pCLE videos, along with their histopathology diagnosis, were used to train the automated classification software which is a content-based image retrieval technique followed by k-nearest neighbor classification. The performance of the off-line diagnosis of pCLE videos established by the 2 expert endoscopists was compared with that of automated pCLE software classification. All evaluations were performed using leave-one-patient- out cross-validation to avoid bias. RESULTS:Colorectal lesions (135) were imaged in 71 patients. Based on histopathology, 93 of these 135 lesions were neoplastic and 42 were non-neoplastic. The study found no statistical significance for the difference between the performance of automated pCLE software classification (accuracy 89.6%, sensitivity 92.5%, specificity 83.3%, using leave-one-patient-out cross-validation) and the performance of the off-line diagnosis of pCLE videos established by the 2 expert endoscopists (accuracy 89.6%, sensitivity 91.4%, specificity 85.7%). There was very low power (< 6%) to detect the observed differences. The 95% confidence intervals for equivalence testing were:-0.073 to 0.073 for accuracy, -0.068 to 0.089 for sensitivity and -0.18 to 0.13 for specificity. The classification software proposed in this study is not a "black box" but an informative tool based on the query by example model that produces, as intermediate results, visually similar annotated videos that are directly interpretable by the endoscopist. CONCLUSION:The proposed software for automated classification of pCLE videos of colonic polyps achieves high performance, comparable to that of off-line diagnosis of pCLE videos established by expert endoscopists.展开更多
Current multi-operator image resizing methods succeed in generating impressive results by using image similarity measure to guide the resizing process. An optimal operation path is found in the resizing space. However...Current multi-operator image resizing methods succeed in generating impressive results by using image similarity measure to guide the resizing process. An optimal operation path is found in the resizing space. However, their slow resizing speed caused by inefficient computation strategy of the bidirectional patch matching becomes a drawback in practical use. In this paper, we present a novel method to address this problem. By combining seam carving with scaling and cropping, our method can realize content-aware image resizing very fast. We define cost functions combing image energy and dominant color descriptor for all the operators to evaluate the damage to both local image content and global visual effect. Therefore our algorithm can automatically find an optimal sequence of operations to resize the image by using dynamic programming or greedy algorithm. We also extend our algorithm to indirect image resizing which can protect the aspect ratio of the dominant object in an image.展开更多
Resolution modulo is an extension of first-order resolution in which rewrite rules are used to rewrite clauses during the search. In the first version of this method, clauses are rewritten to arbitrary propositions. T...Resolution modulo is an extension of first-order resolution in which rewrite rules are used to rewrite clauses during the search. In the first version of this method, clauses are rewritten to arbitrary propositions. These propositions are needed to be dynamically transformed into clauses. This unpleasant feature can be eliminated when the rewrite system is clausal, i.e., when it rewrites clauses to clauses. We show in this paper how to transform any rewrite system into a clausal one, preserving the existence of cut free proofs of any sequent.展开更多
文摘AIM:To support probe-based confocal laser endomi-croscopy (pCLE) diagnosis by designing software for the automated classification of colonic polyps. METHODS:Intravenous fluorescein pCLE imaging of colorectal lesions was performed on patients under-going screening and surveillance colonoscopies, followed by polypectomies. All resected specimens were reviewed by a reference gastrointestinal pathologist blinded to pCLE information. Histopathology was used as the criterion standard for the differentiation between neoplastic and non-neoplastic lesions. The pCLE video sequences, recorded for each polyp, were analyzed off-line by 2 expert endoscopists who were blinded to the endoscopic characteristics and histopathology. These pCLE videos, along with their histopathology diagnosis, were used to train the automated classification software which is a content-based image retrieval technique followed by k-nearest neighbor classification. The performance of the off-line diagnosis of pCLE videos established by the 2 expert endoscopists was compared with that of automated pCLE software classification. All evaluations were performed using leave-one-patient- out cross-validation to avoid bias. RESULTS:Colorectal lesions (135) were imaged in 71 patients. Based on histopathology, 93 of these 135 lesions were neoplastic and 42 were non-neoplastic. The study found no statistical significance for the difference between the performance of automated pCLE software classification (accuracy 89.6%, sensitivity 92.5%, specificity 83.3%, using leave-one-patient-out cross-validation) and the performance of the off-line diagnosis of pCLE videos established by the 2 expert endoscopists (accuracy 89.6%, sensitivity 91.4%, specificity 85.7%). There was very low power (< 6%) to detect the observed differences. The 95% confidence intervals for equivalence testing were:-0.073 to 0.073 for accuracy, -0.068 to 0.089 for sensitivity and -0.18 to 0.13 for specificity. The classification software proposed in this study is not a "black box" but an informative tool based on the query by example model that produces, as intermediate results, visually similar annotated videos that are directly interpretable by the endoscopist. CONCLUSION:The proposed software for automated classification of pCLE videos of colonic polyps achieves high performance, comparable to that of off-line diagnosis of pCLE videos established by expert endoscopists.
基金supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 60872120, 60902078, 61172104the Natural Science Foundation of Beijing under Grant No. 4112061+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry of Chinathe French System@tic Paris-Region (CSDL Project)the National Agency for Research of French (ANR)-NSFC under Grant No. 60911130368
文摘Current multi-operator image resizing methods succeed in generating impressive results by using image similarity measure to guide the resizing process. An optimal operation path is found in the resizing space. However, their slow resizing speed caused by inefficient computation strategy of the bidirectional patch matching becomes a drawback in practical use. In this paper, we present a novel method to address this problem. By combining seam carving with scaling and cropping, our method can realize content-aware image resizing very fast. We define cost functions combing image energy and dominant color descriptor for all the operators to evaluate the damage to both local image content and global visual effect. Therefore our algorithm can automatically find an optimal sequence of operations to resize the image by using dynamic programming or greedy algorithm. We also extend our algorithm to indirect image resizing which can protect the aspect ratio of the dominant object in an image.
基金Supported by the French National Research Agency–National Natural Science Foundation of China under Grant No.61161130530National Natural Science Foundation of China under Grant No.60833001
文摘Resolution modulo is an extension of first-order resolution in which rewrite rules are used to rewrite clauses during the search. In the first version of this method, clauses are rewritten to arbitrary propositions. These propositions are needed to be dynamically transformed into clauses. This unpleasant feature can be eliminated when the rewrite system is clausal, i.e., when it rewrites clauses to clauses. We show in this paper how to transform any rewrite system into a clausal one, preserving the existence of cut free proofs of any sequent.