Dynamic transformation(DT)of austenite(γ)to ferrite(α)in the hot deformation of various carbon steels was widely investigated.However,the nature of DT remains unclear due to the lack of quantitative analysis of stre...Dynamic transformation(DT)of austenite(γ)to ferrite(α)in the hot deformation of various carbon steels was widely investigated.However,the nature of DT remains unclear due to the lack of quantitative analysis of stress partitioning between two phases and the uncertainty of local distribution of substitu-tional elements at the interface in multi-component carbon steels used in the previous studies.Therefore,in the present study,a binary Fe-Ni alloy withα+γduplex microstructure in equilibrium was prepared and isothermally compressed inα+γtwo-phase region to achieve a quantitative analysis of microstruc-ture evolution,stress partitioning,and thermodynamics during DT.γtoαDT during isothermal compres-sion andαtoγreverse transformation on isothermal annealing under unloaded condition after deforma-tion were accompanied by Ni partitioning.The lattice strains during thermomechanical processing were obtained via in-situ neutron diffraction measurement,based on which the stress partitioning behavior betweenγandαwas discussed by using the generalized Hooke’s law.A thermodynamic framework for the isothermal deformation in solids was established based on the basic laws of thermodynamics,and it was shown that the total Helmholtz free energy change in the deformable material during the isothermal process should be smaller than the work done to the deformable material.Under the present thermody-namic framework,the microstructure evolution in the isothermal compression of Fe-14Ni alloy was well explained by considering the changes in chemical free energy,plastic and elastic energies,and the work done to the material.In addition,the stabilization of the softαphase in Fe-14Ni alloy by deformation was rationalized since theγtoαtransformation decreased the total Helmholtz free energy by decreasing the elastic and dislocation energies.展开更多
Andrias davidianus(Chinese giant salamander,CGS)is the largest and oldest extant amphibian species in the world and is a source of prospective functional food in China.However,the progress of functional peptides minin...Andrias davidianus(Chinese giant salamander,CGS)is the largest and oldest extant amphibian species in the world and is a source of prospective functional food in China.However,the progress of functional peptides mining was slow due to lack of reference genome and protein sequence data.In this study,we illustrated full-length transcriptome sequencing to interpret the proteome of CGS meat and obtain 10703 coding DNA sequences.By functional annotation and amino acid composition analysis,we have discovered various genes related to signal transduction,and 16 genes related to longevity.We have also found vast variety of functional peptides through protein coding sequence(CDS)analysis by comparing the data obtained with the functional peptide database.Val-Pro-Ile predicted by the CDS analysis was released from the CGS meat through enzymatic hydrolysis,suggesting that our approach is reliable.This study suggested that transcriptomic analysis can be used as a reference to guide polypeptide mining in CGS meat,thereby providing a powerful mining strategy for the bioresources with unknown genomic and proteomic sequences.展开更多
Recent progress in the physics and engineering design study for themodification programme of JT-60 is presented. In order to achieve a steady state high-βplasmaoperation, which is the dominant issue of this programme...Recent progress in the physics and engineering design study for themodification programme of JT-60 is presented. In order to achieve a steady state high-βplasmaoperation, which is the dominant issue of this programme, physics design for the MHD control and thestability analysis is investigated. Engineering design and the R & D for the superconducting coils,irradiation shield are performed well towards the mission of programme.展开更多
For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydroc...For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydrochloric acid solutions with P507 in Shellsol D70 were studied. A chemically-based model was established and the extraction equilibrium constants were determined by the nonlinear least squares method. The proposed model involves the cation exchange reaction and the solvation extraction in the low and high acidity regions, respectively. In the model, the nonideality of the aqueous phase and was corrected by considering the complexation of the metals with Cl- and by replacing with its effective concentration, respectively. This model was verified by fair agreement between the calculated metal distribution ratios and those experimentally obtained in the single metal systems. The feed concentrations for the systems are in wide ranges of the metal (up to 0.1 mol/L), hydrochloric acid (0.07-3.00 mol/L) and the extractant (0.25-1.00 mol/L). The model enables the engineering prediction of the equilibrium distribution ratios with good accuracy in a binary metal system.展开更多
The microstructure formation and grains refinement of two Mg-based alloys,i.e.AZ31 and AZ91D,were reported using an electromagnetic vibration(EMV) technique.These two alloys were solidified at various vibration freque...The microstructure formation and grains refinement of two Mg-based alloys,i.e.AZ31 and AZ91D,were reported using an electromagnetic vibration(EMV) technique.These two alloys were solidified at various vibration frequencies and the microstructures were observed.The average size of grains was quantitatively measured as a function of vibration frequencies. Moreover,the grain size distribution was outlined versus number fraction.A novel model was proposed to account for the microstructure formation and grain refinement when considering the significant difference of the electrical resistivity properties of the solid and the liquid during EMV processing in the semisolid state.The remarkable difference originates uncoupled movement between the mobile solid and the sluggish liquid,which can activate melt flow.The microstructure evolution can be well explained when the fluid flow intensity versus vibration frequency is taken into account.Moreover,the influence of the static magnetic field on texture formation is also considered,which plays an important role at higher vibration frequencies.展开更多
Three industry-supplied, well-shaped Mo/HZSM-5 catalysts, two binder-added and one binder-free, were tested for the first time in methane dehydroaromatization to benzene at 1073 K and 10000 mL/(g·h) in periodic...Three industry-supplied, well-shaped Mo/HZSM-5 catalysts, two binder-added and one binder-free, were tested for the first time in methane dehydroaromatization to benzene at 1073 K and 10000 mL/(g·h) in periodic CH4-H2 switch operation mode, and their catalytic performances were compared with those of three self-prepared, binder-free powder Mo/HZSM-5 catalysts. XRD, 27Al NMR, SEM, BET and NH3-TPD characterizations of all the catalysts show that the zeolites in the two binder-added catalysts are comparable to those in the three binder-free powder catalysts in crystallinity, crystal size, micropore volume and Br{/o}nsted acidity. The test results, on the other hand, show that the catalytic performances of the two binder-added catalysts are worse than those of the four binder-free catalysts on both catalyst mass and zeolite mass bases. Then, TPO and BET measurements of all spent samples were conducted to get a deep insight into the negative effects of binder addition, and the results suggest that the binder additives functioned mainly to enhance the polyaromatization of formed aromatics to coke on their external surfaces and consequently lower the catalysts' benzene formation activity and selectivity.展开更多
In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with f...In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with fluid injection in the laboratory. Furthermore, we tested a number of numerical models using the FLAC;modeling software to find the best model to represent the experimental results. The high-speed multichannel acoustic emission(AE) waveform recording system used in this study made it possible to examine the total fracture process through detailed monitoring of AE hypocenters and seismic velocity.The experimental results show that injecting high-pressure oil into the rock sample can induce AE activity at very low stress levels and can dramatically reduce the strength of the rock. The results of the numerical simulations show that major experimental results, including the strength, the temporal and spatial patterns of the AE events, and the role of the fluid can be represented fairly well by a model involving(1) randomly distributed defect elements to model pre-existing cracks,(2) random modification of rock properties to represent inhomogeneity introduced by different mineral grains, and(3)macroscopic inhomogeneity. Our study, which incorporates laboratory experiments and numerical simulations, indicates that such an approach is helpful in finding a better model not only for simulating experimental results but also for upscaling purposes.展开更多
Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transforma...Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transformation mechanism of ROS have been largely overlooked.In this study,considering g‐C3N4 to be a model photocatalyst,we have focused on the ROS generation and transformation for efficient photocatalytic NO removal.It was found that the key to improving the photocatalysis performance was to enhance the ROS transformation from·O2^-to·OH,elevating the production of·OH.The ROS directly participate in the photocatalytic NO removal and tailor the rate‐determining step,which is required to overcome the high activation energy of the intermediate conversion.Using a closely combined experimental and theoretical method,this work provides a new protocol to investigate the ROS behavior on g‐C3N4 for effective NO removal and clarifies the reaction mechanism at the atomic level,which enriches the understanding of ROS in photocatalytic environmental remediation.展开更多
Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes,which governs the interface charge transfer,electron transportation,and structural stability.Herein,Mo...Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes,which governs the interface charge transfer,electron transportation,and structural stability.Herein,MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2-and nitrogen-doped three-dimensional(3D)carbon framework as MoSe2/MoC/N–C connection,which greatly improve the structural stability,electronic conductivity,and interfacial charge transfer.Moreover,the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework,producing much smaller MoSe2 nanodots.The obtained MoSe2 nanodots with fewer layers,rich edge sites,and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions.Employing as anode material for lithium-ion batteries,it shows ultralong cycle life(with 90%capacity retention after 5000 cycles at 2 A g−1)and excellent rate capability.Moreover,the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86%capacity retention at 2 A g−1 after 300 cycles.The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability,which can be extended as a potential general strategy for the interface engineering of composite materials.展开更多
Aim: To identify proteins induced by androgen in Sertoli cells during spermatogenesis. Methods: We analyzed protein profiles in TM4 Sertoli cells treated with dihydrotestosterone (DHT) using surface enhanced laser...Aim: To identify proteins induced by androgen in Sertoli cells during spermatogenesis. Methods: We analyzed protein profiles in TM4 Sertoli cells treated with dihydrotestosterone (DHT) using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Results: We found increases in the expression of a 5.0-kDa protein at 15 min, an 11.3-kDa protein at 24 h and 4.3 kDa, 5.7 kDa, 5.8 kDa, 9.95 kDa and 9.98 kDa proteins at 48 h after the treatment. In contrast, the expression of 6.3 kDa and 8.6 kDa proteins decreased at 30 min, and 4.9 kDa, 5.0 kDa, 12.4 kDa and 19.8 kDa proteins at 48 h after the treatment. The ll.3-kDa protein was identified as macrophage migration inhibitory factor (MIF) known to having various functions. The 9.98-kDa protein was identified as calgizzarin related to calcium channels. The timing of their expression suggests that MIF and calgizzarin are involved in late regulation of spermatogenesis in Sertoli cells by androgen. Conclusion: MIF and calgizzarin are two important androgen-responsive proteins produced by Sertoli cells and they might play a role in regulating spermatogenesis.展开更多
[Hmim]_3PW_(12)O_(40) was developed and used in the acetalization of carbonyl compounds in excellent yields.The ionic liquidheteropoly acid hybrid compound and reaction medium formed temperature-dependent phase-separa...[Hmim]_3PW_(12)O_(40) was developed and used in the acetalization of carbonyl compounds in excellent yields.The ionic liquidheteropoly acid hybrid compound and reaction medium formed temperature-dependent phase-separation system with the ease of product as well as catalyst separation.The catalyst was recycled more than 10 times without any apparent loss of catalytic activity.展开更多
Bending and tension deformations were performed on Mg-1.3 wt%Zn-0.2 wt%RE-0.3 wt%Zr(ZEK100)alloy sheets that initially had a transverse direction(TD)-split texture.The effects of bending and tension deformations on th...Bending and tension deformations were performed on Mg-1.3 wt%Zn-0.2 wt%RE-0.3 wt%Zr(ZEK100)alloy sheets that initially had a transverse direction(TD)-split texture.The effects of bending and tension deformations on the texture formation and room-temperature formability of specimens were investigated.The specimen subjected to 3-pass bending and tension deformations exhibited an excellent Erichsen value of 9.6 mm.However,the Erichsen value deterioration was observed in the specimen subjected to 7-pass deformations.The rolling direction-split texture developed on the surface with an increasing pass number of deformations.Conversely,the clear TD-split texture remained at the central part.As a result,a quadrupole texture was macroscopically developed with an increasing pass number of deformations.The reduction in anisotropy by the formation of the quadrupole texture is suggested to be the main reason for the improvement in stretch formability.By contrast,the generation of coarse grains near the surface is suggested to be the direct cause for the deterioration of the stretch formability of the specimen subjected to 7-pass deformations.展开更多
This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2...This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.展开更多
Surface-enhanced resonance Raman scattering(SERRS)has recently attracted great interest in analytical science due toenormous enhancement factors that have decreased the detec-tionli mits of a wide variety of molecules...Surface-enhanced resonance Raman scattering(SERRS)has recently attracted great interest in analytical science due toenormous enhancement factors that have decreased the detec-tionli mits of a wide variety of molecules to the single moleculelevel.The SERRS-electromagnetic(EM)model describessingle-molecule SERRS展开更多
To understand the evolution of stress-induced elastic wave anisotropy,three triaxial experiments were performed on sandstone specimens with bedding orientations parallel,perpendicular,and oblique to the maximum princi...To understand the evolution of stress-induced elastic wave anisotropy,three triaxial experiments were performed on sandstone specimens with bedding orientations parallel,perpendicular,and oblique to the maximum principal stress.P-wave velocities along 64 different directions on each specimen were monitored frequently to understand the anisotropy change at various stress levels by fitting Thomsen’s anisotropy equation.The results show that the elastic wave anisotropy is very sensitive to mechanical loading.Under hydrostatic loading,the magnitude of anisotropy is reduced in all three specimens.However,under deviatoric stress loading,the evolution of anisotropic characteristics(magnitude and orientation of the symmetry axis)is bedding orientation dependent.Anisotropy reversal occurs in specimens with bedding normal/oblique to the maximum principal stress.P-wave anisotropyε0 is linearly related to volumetric strain Sv and dilatancy,indicating that stress-induced redistribution of microcracks has a significant effect on P-wave velocity anisotropy.The closure of initial cracks and pores aligned in the bedding direction contributes to the decrease of the anisotropy.However,opening of new cracks,aligned in the maximum principal direction,accounts for the increase of the anisotropy.The experimental results provide some insights into the microstructural behavior under loading and provide an experimental basis for seismic data interpretation and parameter selection in engineering applications.展开更多
LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas wel...LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas well-defined layered structure and uniform element distribution, which reveals an enhanced electro-chemical performance with a capacity retention of 97.9% after 100 cycles at 0.2 C, and reduced thermalrunaway from the isothermal calorimetry test. In situ X-ray diffraction (XRD) was employed to capturethe structural changes during the charge-discharge process. The reversible evolutions of lattice parame-ters (a, b, c, and V) further verify the structural stability.展开更多
The Earth’s sustainable development is threatened by the increasing atmospheric COlevel which can be attributed to the imbalance of COdue to the rapid consumption of fossil fuels caused by human activities and the sl...The Earth’s sustainable development is threatened by the increasing atmospheric COlevel which can be attributed to the imbalance of COdue to the rapid consumption of fossil fuels caused by human activities and the slow absorption and conversion of COby nature. One of the efficient methods for reconstructing the balance of COshould involve the rapid conversion of COinto fuels and chemicals.The hydrogenation of COwith gaseous hydrogen is currently considered to be the most commercially feasible synthetic route, however, the supply of safe and economical hydrogen sources poses a significant challenge to up-scaling application. Direct utilization of hydrogen from dissociation of water, the most abundant, cheap and clean hydrogen resource, for the reduction of COwould be one of the most promising approaches for COutilization. This paper provides an overview of the current advances in research on highly efficient reduction of COor NaHCO, a representative compound of CO, into formic acid/formate by in situ hydrogen from water dissociation with a metal/metal oxide redox cycle under mild hydrothermal conditions.展开更多
It is a challenge to thoroughly understand the astonishing difference in catalytic activity between nanogold and bulk gold for some oxidation reactions. In this work,the Au–O interactions in various surroundings were...It is a challenge to thoroughly understand the astonishing difference in catalytic activity between nanogold and bulk gold for some oxidation reactions. In this work,the Au–O interactions in various surroundings were investigated by DFT calculations and compared with the Ag–O interactions. We have found the three points.First,only Au–O bond can be significantly strengthened by the linear O–Au–O structure. Second,the Au–O bond is always stronger than the Ag–O bond when the bonds are embedded in common surroundings. Third,the Au–O bond becomes weaker than the Ag–O bond when the number of neighboring Au atoms becomes large,because the Au–O interactions are suppressed by the presence of neighboring gold atoms. The origin of these three points can be attributed to wider spatial extension of d orbitals of gold,induced by strong relativistic effects. The strong relativistic effects make nanogold with smaller coordinate numbers highly active due to the ease in forming strong Au–O bonds,especially for the O–Au–O bond,whereas gold atoms in bulk with larger coordination numbers chemically inert due to the strong suppression by neighboring gold atoms destabilizing the O–Au–O bond.展开更多
This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result...This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result of overburden excavation.The excessively acidic condition inhibits plant growth due to the dissolution of harmful elements,such as Al,Fe,and Mn.Fly ash,an alkaline byproduct of coal combustion generated in thermal power plants is expected to be adopted to ameliorate acidic soils.However,the mixing ratio of fy ash must be considered because excessive addition of fy ash can have a negative impact on plant growth due to its physical/chemical properties.The pot trials using Acacia mangium demonstrate the evolution of plant growth with a 5%–10%addition of fy ash into acidic soil.When the acidic soil has a high potential for metal dissolution,the metal ions leached from the acidic soil are large,making it difcult to improve plant growth due to osmotic and ionic stress.This work suggests that the efects of fy ash on metal ions leached from the soil have to be considered for the amelioration of acidic soil.展开更多
Background:The application of cryopreservation and artificial insemination technology have contributed to the advancement of animal reproduction.However,a substantial proportion of spermatozoa undergoes alterations an...Background:The application of cryopreservation and artificial insemination technology have contributed to the advancement of animal reproduction.However,a substantial proportion of spermatozoa undergoes alterations and loses their fertility during cryopreservation,rendering the frozen-thawed semen impractical for routine use.Cryopreservation is known to reduce sperm lifespan and fertility.Variation in cryosurvival of spermatozoa from different sires and even with the individual sire is common in artificial insemination(AI)centers.Our goal is to improve post-thawed semen quality by optimization of cryopreservation technique through sperm selection prior to cryopreservation process.Results:Our strategy of sperm selection based on rheotaxis and thermotaxis(SSRT)on macrosale in a rotating fluid flow demonstrated the ability to maintain the original pre-freezing structural integrity,viability and biological function related to fertilization competence.This strategy has a positive effect on the cryosurvival and fertilizing abilities of spermatozoa as supported by the improvement on pregnancy rate of Japanese Black heifers and Holstein repeat breeders.This technique protected further sublethal damage to bovine spermatozoa(higher%cryosurvival than the control)and resulted in the improvement of DNA integrity.Prefreeze selected spermatozoa demonstrated slower and controlled capacitation than unprocessed control which is thought to be related to sperm longevity and consequently to appropriate timing during in vivo fertilization.Conclusions:These results provide solid evidence that improvement of post-thawed semen quality by SSRT method is beneficial in terms of cryosurvival,longevity of post-thawed sperm,and optimization of in vivo fertilization,embryo development and calving as supported by the favorable results of field fertility study.展开更多
基金by JST FOREST Program(Grant No.JPMJFR203W,Japan)MEXT through Grant-in-Aid for Scientific Research(B)(No.19H02473,2019-2021)+2 种基金Grant-in-Aid for Scientific Research on Innovative Areas(Research in a proposed research area)(No.18H05456,2018-2022)the partial support through the research grant funded by the Amada Foundation(2022-2023)the financial support from the Amada Foundation(AF-2022017-B2).L.L.gratefully acknowledges the financial support provided by China Scholarship Council(No.201806295030)and thanks Dr.Elango Chandiran。
文摘Dynamic transformation(DT)of austenite(γ)to ferrite(α)in the hot deformation of various carbon steels was widely investigated.However,the nature of DT remains unclear due to the lack of quantitative analysis of stress partitioning between two phases and the uncertainty of local distribution of substitu-tional elements at the interface in multi-component carbon steels used in the previous studies.Therefore,in the present study,a binary Fe-Ni alloy withα+γduplex microstructure in equilibrium was prepared and isothermally compressed inα+γtwo-phase region to achieve a quantitative analysis of microstruc-ture evolution,stress partitioning,and thermodynamics during DT.γtoαDT during isothermal compres-sion andαtoγreverse transformation on isothermal annealing under unloaded condition after deforma-tion were accompanied by Ni partitioning.The lattice strains during thermomechanical processing were obtained via in-situ neutron diffraction measurement,based on which the stress partitioning behavior betweenγandαwas discussed by using the generalized Hooke’s law.A thermodynamic framework for the isothermal deformation in solids was established based on the basic laws of thermodynamics,and it was shown that the total Helmholtz free energy change in the deformable material during the isothermal process should be smaller than the work done to the deformable material.Under the present thermody-namic framework,the microstructure evolution in the isothermal compression of Fe-14Ni alloy was well explained by considering the changes in chemical free energy,plastic and elastic energies,and the work done to the material.In addition,the stabilization of the softαphase in Fe-14Ni alloy by deformation was rationalized since theγtoαtransformation decreased the total Helmholtz free energy by decreasing the elastic and dislocation energies.
基金funded by Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173207022)。
文摘Andrias davidianus(Chinese giant salamander,CGS)is the largest and oldest extant amphibian species in the world and is a source of prospective functional food in China.However,the progress of functional peptides mining was slow due to lack of reference genome and protein sequence data.In this study,we illustrated full-length transcriptome sequencing to interpret the proteome of CGS meat and obtain 10703 coding DNA sequences.By functional annotation and amino acid composition analysis,we have discovered various genes related to signal transduction,and 16 genes related to longevity.We have also found vast variety of functional peptides through protein coding sequence(CDS)analysis by comparing the data obtained with the functional peptide database.Val-Pro-Ile predicted by the CDS analysis was released from the CGS meat through enzymatic hydrolysis,suggesting that our approach is reliable.This study suggested that transcriptomic analysis can be used as a reference to guide polypeptide mining in CGS meat,thereby providing a powerful mining strategy for the bioresources with unknown genomic and proteomic sequences.
文摘Recent progress in the physics and engineering design study for themodification programme of JT-60 is presented. In order to achieve a steady state high-βplasmaoperation, which is the dominant issue of this programme, physics design for the MHD control and thestability analysis is investigated. Engineering design and the R & D for the superconducting coils,irradiation shield are performed well towards the mission of programme.
基金Project(P02426)supported by the Japan Society for the Promotion of Science for Postdoctoral Fellowships for Foreign Researchers
文摘For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydrochloric acid solutions with P507 in Shellsol D70 were studied. A chemically-based model was established and the extraction equilibrium constants were determined by the nonlinear least squares method. The proposed model involves the cation exchange reaction and the solvation extraction in the low and high acidity regions, respectively. In the model, the nonideality of the aqueous phase and was corrected by considering the complexation of the metals with Cl- and by replacing with its effective concentration, respectively. This model was verified by fair agreement between the calculated metal distribution ratios and those experimentally obtained in the single metal systems. The feed concentrations for the systems are in wide ranges of the metal (up to 0.1 mol/L), hydrochloric acid (0.07-3.00 mol/L) and the extractant (0.25-1.00 mol/L). The model enables the engineering prediction of the equilibrium distribution ratios with good accuracy in a binary metal system.
文摘The microstructure formation and grains refinement of two Mg-based alloys,i.e.AZ31 and AZ91D,were reported using an electromagnetic vibration(EMV) technique.These two alloys were solidified at various vibration frequencies and the microstructures were observed.The average size of grains was quantitatively measured as a function of vibration frequencies. Moreover,the grain size distribution was outlined versus number fraction.A novel model was proposed to account for the microstructure formation and grain refinement when considering the significant difference of the electrical resistivity properties of the solid and the liquid during EMV processing in the semisolid state.The remarkable difference originates uncoupled movement between the mobile solid and the sluggish liquid,which can activate melt flow.The microstructure evolution can be well explained when the fluid flow intensity versus vibration frequency is taken into account.Moreover,the influence of the static magnetic field on texture formation is also considered,which plays an important role at higher vibration frequencies.
文摘Three industry-supplied, well-shaped Mo/HZSM-5 catalysts, two binder-added and one binder-free, were tested for the first time in methane dehydroaromatization to benzene at 1073 K and 10000 mL/(g·h) in periodic CH4-H2 switch operation mode, and their catalytic performances were compared with those of three self-prepared, binder-free powder Mo/HZSM-5 catalysts. XRD, 27Al NMR, SEM, BET and NH3-TPD characterizations of all the catalysts show that the zeolites in the two binder-added catalysts are comparable to those in the three binder-free powder catalysts in crystallinity, crystal size, micropore volume and Br{/o}nsted acidity. The test results, on the other hand, show that the catalytic performances of the two binder-added catalysts are worse than those of the four binder-free catalysts on both catalyst mass and zeolite mass bases. Then, TPO and BET measurements of all spent samples were conducted to get a deep insight into the negative effects of binder addition, and the results suggest that the binder additives functioned mainly to enhance the polyaromatization of formed aromatics to coke on their external surfaces and consequently lower the catalysts' benzene formation activity and selectivity.
基金supported by State Key Laboratory of Earthquake Dynamics,China
文摘In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with fluid injection in the laboratory. Furthermore, we tested a number of numerical models using the FLAC;modeling software to find the best model to represent the experimental results. The high-speed multichannel acoustic emission(AE) waveform recording system used in this study made it possible to examine the total fracture process through detailed monitoring of AE hypocenters and seismic velocity.The experimental results show that injecting high-pressure oil into the rock sample can induce AE activity at very low stress levels and can dramatically reduce the strength of the rock. The results of the numerical simulations show that major experimental results, including the strength, the temporal and spatial patterns of the AE events, and the role of the fluid can be represented fairly well by a model involving(1) randomly distributed defect elements to model pre-existing cracks,(2) random modification of rock properties to represent inhomogeneity introduced by different mineral grains, and(3)macroscopic inhomogeneity. Our study, which incorporates laboratory experiments and numerical simulations, indicates that such an approach is helpful in finding a better model not only for simulating experimental results but also for upscaling purposes.
基金the National Natural Science Foundation of China(51508356)Science and Technology Support Program of Sichuan Province(2014GZ0213,2016GZ0045)Youth Project in Science and Technology Innovation Program of Sichuan Province(17-YCG053)~~
文摘Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transformation mechanism of ROS have been largely overlooked.In this study,considering g‐C3N4 to be a model photocatalyst,we have focused on the ROS generation and transformation for efficient photocatalytic NO removal.It was found that the key to improving the photocatalysis performance was to enhance the ROS transformation from·O2^-to·OH,elevating the production of·OH.The ROS directly participate in the photocatalytic NO removal and tailor the rate‐determining step,which is required to overcome the high activation energy of the intermediate conversion.Using a closely combined experimental and theoretical method,this work provides a new protocol to investigate the ROS behavior on g‐C3N4 for effective NO removal and clarifies the reaction mechanism at the atomic level,which enriches the understanding of ROS in photocatalytic environmental remediation.
基金This work was supported by the National Natural Science Foundation of China(No 51872334,51932011,51874326,51572299)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(2018JJ1036)the Independent exploration and innovation Project for graduate students of central south university(2019zzts049).
文摘Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes,which governs the interface charge transfer,electron transportation,and structural stability.Herein,MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2-and nitrogen-doped three-dimensional(3D)carbon framework as MoSe2/MoC/N–C connection,which greatly improve the structural stability,electronic conductivity,and interfacial charge transfer.Moreover,the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework,producing much smaller MoSe2 nanodots.The obtained MoSe2 nanodots with fewer layers,rich edge sites,and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions.Employing as anode material for lithium-ion batteries,it shows ultralong cycle life(with 90%capacity retention after 5000 cycles at 2 A g−1)and excellent rate capability.Moreover,the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86%capacity retention at 2 A g−1 after 300 cycles.The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability,which can be extended as a potential general strategy for the interface engineering of composite materials.
文摘Aim: To identify proteins induced by androgen in Sertoli cells during spermatogenesis. Methods: We analyzed protein profiles in TM4 Sertoli cells treated with dihydrotestosterone (DHT) using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Results: We found increases in the expression of a 5.0-kDa protein at 15 min, an 11.3-kDa protein at 24 h and 4.3 kDa, 5.7 kDa, 5.8 kDa, 9.95 kDa and 9.98 kDa proteins at 48 h after the treatment. In contrast, the expression of 6.3 kDa and 8.6 kDa proteins decreased at 30 min, and 4.9 kDa, 5.0 kDa, 12.4 kDa and 19.8 kDa proteins at 48 h after the treatment. The ll.3-kDa protein was identified as macrophage migration inhibitory factor (MIF) known to having various functions. The 9.98-kDa protein was identified as calgizzarin related to calcium channels. The timing of their expression suggests that MIF and calgizzarin are involved in late regulation of spermatogenesis in Sertoli cells by androgen. Conclusion: MIF and calgizzarin are two important androgen-responsive proteins produced by Sertoli cells and they might play a role in regulating spermatogenesis.
基金support from Nanjing University of Science and Technology
文摘[Hmim]_3PW_(12)O_(40) was developed and used in the acetalization of carbonyl compounds in excellent yields.The ionic liquidheteropoly acid hybrid compound and reaction medium formed temperature-dependent phase-separation system with the ease of product as well as catalyst separation.The catalyst was recycled more than 10 times without any apparent loss of catalytic activity.
文摘Bending and tension deformations were performed on Mg-1.3 wt%Zn-0.2 wt%RE-0.3 wt%Zr(ZEK100)alloy sheets that initially had a transverse direction(TD)-split texture.The effects of bending and tension deformations on the texture formation and room-temperature formability of specimens were investigated.The specimen subjected to 3-pass bending and tension deformations exhibited an excellent Erichsen value of 9.6 mm.However,the Erichsen value deterioration was observed in the specimen subjected to 7-pass deformations.The rolling direction-split texture developed on the surface with an increasing pass number of deformations.Conversely,the clear TD-split texture remained at the central part.As a result,a quadrupole texture was macroscopically developed with an increasing pass number of deformations.The reduction in anisotropy by the formation of the quadrupole texture is suggested to be the main reason for the improvement in stretch formability.By contrast,the generation of coarse grains near the surface is suggested to be the direct cause for the deterioration of the stretch formability of the specimen subjected to 7-pass deformations.
基金supported by State Key Laboratory of Earthquake Dynamics (project No.LED2010A03)Wenchuan Earthquake Fault Scientific Drilling Project (WFSD-09)
文摘This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.
文摘Surface-enhanced resonance Raman scattering(SERRS)has recently attracted great interest in analytical science due toenormous enhancement factors that have decreased the detec-tionli mits of a wide variety of molecules to the single moleculelevel.The SERRS-electromagnetic(EM)model describessingle-molecule SERRS
基金The research was partially supported by the National Natural Science Foundation of China(Grant Nos.41902297,41872210)the Natural Science Foundation of Hubei Province(Grant No.2018CFB292)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017006).
文摘To understand the evolution of stress-induced elastic wave anisotropy,three triaxial experiments were performed on sandstone specimens with bedding orientations parallel,perpendicular,and oblique to the maximum principal stress.P-wave velocities along 64 different directions on each specimen were monitored frequently to understand the anisotropy change at various stress levels by fitting Thomsen’s anisotropy equation.The results show that the elastic wave anisotropy is very sensitive to mechanical loading.Under hydrostatic loading,the magnitude of anisotropy is reduced in all three specimens.However,under deviatoric stress loading,the evolution of anisotropic characteristics(magnitude and orientation of the symmetry axis)is bedding orientation dependent.Anisotropy reversal occurs in specimens with bedding normal/oblique to the maximum principal stress.P-wave anisotropyε0 is linearly related to volumetric strain Sv and dilatancy,indicating that stress-induced redistribution of microcracks has a significant effect on P-wave velocity anisotropy.The closure of initial cracks and pores aligned in the bedding direction contributes to the decrease of the anisotropy.However,opening of new cracks,aligned in the maximum principal direction,accounts for the increase of the anisotropy.The experimental results provide some insights into the microstructural behavior under loading and provide an experimental basis for seismic data interpretation and parameter selection in engineering applications.
基金partially supported by the National Key Research and Development Program of China (2016YFB0100203)the National Natural Science Foundation of China (21673116,21633003)+1 种基金the Natural Science Foundation of Jiangsu Province of China (BK20160068)PAPD of Jiangsu Higher Education Institutions
文摘LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas well-defined layered structure and uniform element distribution, which reveals an enhanced electro-chemical performance with a capacity retention of 97.9% after 100 cycles at 0.2 C, and reduced thermalrunaway from the isothermal calorimetry test. In situ X-ray diffraction (XRD) was employed to capturethe structural changes during the charge-discharge process. The reversible evolutions of lattice parame-ters (a, b, c, and V) further verify the structural stability.
基金the financial support of the National Natural Science Foundation of China (Nos. 21277091 and 51472159)the State Key Program of National Natural Science Foundation of China (No. 21436007)+1 种基金the Key Basic Research Projects of Science and Technology Commission of Shanghai (No. 14JC1403100)the Chenxing-SMG Young Scholar Project of Shanghai Jiao Tong University
文摘The Earth’s sustainable development is threatened by the increasing atmospheric COlevel which can be attributed to the imbalance of COdue to the rapid consumption of fossil fuels caused by human activities and the slow absorption and conversion of COby nature. One of the efficient methods for reconstructing the balance of COshould involve the rapid conversion of COinto fuels and chemicals.The hydrogenation of COwith gaseous hydrogen is currently considered to be the most commercially feasible synthetic route, however, the supply of safe and economical hydrogen sources poses a significant challenge to up-scaling application. Direct utilization of hydrogen from dissociation of water, the most abundant, cheap and clean hydrogen resource, for the reduction of COwould be one of the most promising approaches for COutilization. This paper provides an overview of the current advances in research on highly efficient reduction of COor NaHCO, a representative compound of CO, into formic acid/formate by in situ hydrogen from water dissociation with a metal/metal oxide redox cycle under mild hydrothermal conditions.
基金supported by Grant-in-Aid for Specially Promoted Research Grant no.19001005 from the Ministry of Education,Culture,Sports,Science and Technology of Japan (MEXT)supported by the Management Expenses Grants for National Universities Corporations from MEXTJapan Science and Technology Agency (JST),Core Research for Evolutional Science and Technology (CREST)
文摘It is a challenge to thoroughly understand the astonishing difference in catalytic activity between nanogold and bulk gold for some oxidation reactions. In this work,the Au–O interactions in various surroundings were investigated by DFT calculations and compared with the Ag–O interactions. We have found the three points.First,only Au–O bond can be significantly strengthened by the linear O–Au–O structure. Second,the Au–O bond is always stronger than the Ag–O bond when the bonds are embedded in common surroundings. Third,the Au–O bond becomes weaker than the Ag–O bond when the number of neighboring Au atoms becomes large,because the Au–O interactions are suppressed by the presence of neighboring gold atoms. The origin of these three points can be attributed to wider spatial extension of d orbitals of gold,induced by strong relativistic effects. The strong relativistic effects make nanogold with smaller coordinate numbers highly active due to the ease in forming strong Au–O bonds,especially for the O–Au–O bond,whereas gold atoms in bulk with larger coordination numbers chemically inert due to the strong suppression by neighboring gold atoms destabilizing the O–Au–O bond.
文摘This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result of overburden excavation.The excessively acidic condition inhibits plant growth due to the dissolution of harmful elements,such as Al,Fe,and Mn.Fly ash,an alkaline byproduct of coal combustion generated in thermal power plants is expected to be adopted to ameliorate acidic soils.However,the mixing ratio of fy ash must be considered because excessive addition of fy ash can have a negative impact on plant growth due to its physical/chemical properties.The pot trials using Acacia mangium demonstrate the evolution of plant growth with a 5%–10%addition of fy ash into acidic soil.When the acidic soil has a high potential for metal dissolution,the metal ions leached from the acidic soil are large,making it difcult to improve plant growth due to osmotic and ionic stress.This work suggests that the efects of fy ash on metal ions leached from the soil have to be considered for the amelioration of acidic soil.
基金supported by the Ministry of Agriculture,Forestry and Fisheries,Japan(MAFF)under the project name“Development of technology for enhancement of livestock lifetime productivity by improving fertility through assisted reproduction”the JSPS KAKENHI(15H04585).
文摘Background:The application of cryopreservation and artificial insemination technology have contributed to the advancement of animal reproduction.However,a substantial proportion of spermatozoa undergoes alterations and loses their fertility during cryopreservation,rendering the frozen-thawed semen impractical for routine use.Cryopreservation is known to reduce sperm lifespan and fertility.Variation in cryosurvival of spermatozoa from different sires and even with the individual sire is common in artificial insemination(AI)centers.Our goal is to improve post-thawed semen quality by optimization of cryopreservation technique through sperm selection prior to cryopreservation process.Results:Our strategy of sperm selection based on rheotaxis and thermotaxis(SSRT)on macrosale in a rotating fluid flow demonstrated the ability to maintain the original pre-freezing structural integrity,viability and biological function related to fertilization competence.This strategy has a positive effect on the cryosurvival and fertilizing abilities of spermatozoa as supported by the improvement on pregnancy rate of Japanese Black heifers and Holstein repeat breeders.This technique protected further sublethal damage to bovine spermatozoa(higher%cryosurvival than the control)and resulted in the improvement of DNA integrity.Prefreeze selected spermatozoa demonstrated slower and controlled capacitation than unprocessed control which is thought to be related to sperm longevity and consequently to appropriate timing during in vivo fertilization.Conclusions:These results provide solid evidence that improvement of post-thawed semen quality by SSRT method is beneficial in terms of cryosurvival,longevity of post-thawed sperm,and optimization of in vivo fertilization,embryo development and calving as supported by the favorable results of field fertility study.