Laser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration.We examine this through partic...Laser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration.We examine this through particle-in-cell and Monte Carlo simulations that model,respectively,the laser acceleration of protons from thin-foil targets and their subsequent conversion into neutrons in secondary lead targets.Laser parameters relevant to the 0.5 PW LMJ-PETAL and 0.6–6 PW Apollon systems are considered.Owing to its high intensity,the 20-fs-duration 0.6 PW Apollon laser is expected to accelerate protons up to above 100MeV,thereby unlocking efficient neutron generation via spallation reactions.As a result,despite a 30-fold lower pulse energy than the LMJ-PETAL laser,the 0.6 PW Apollon laser should perform comparably well both in terms of neutron yield and flux.Notably,we predict that very compact neutron pulses,of∼10 ps duration and∼100μm spot size,can be released provided the lead convertor target is thin enough(∼100μm).These sources are characterized by extreme fluxes,of the order of 10^(23) n cm^(−2) s^(−1),and even ten times higher when using the 6 PW Apollon laser.Such values surpass those currently achievable at large-scale accelerator-based neutron sources(∼10^(16) n cm^(−2) s^(−1)),or reported from previous laser experiments using low-Z converters(∼10^(18) n cm^(−2) s^(−1)).By showing that such laser systems can produce neutron pulses significantly brighter than existing sources,our findings open a path toward attractive novel applications,such as flash neutron radiography and laboratory studies of heavy-ion nucleosynthesis.展开更多
Heavy-ion fusion reactions between light nuclei such as carbon and oxygen isotopes have been studied becauseof their importance in a wide variety of stellar burning scenarios. However, due to extremely low cross secti...Heavy-ion fusion reactions between light nuclei such as carbon and oxygen isotopes have been studied becauseof their importance in a wide variety of stellar burning scenarios. However, due to extremely low cross sectionsand signal/background ratio, all the measurements could only be carried out at energies well above the regionof astrophysical interest. The reaction rates in stellar environment could be estimated only by extrapolating theexisted cross sections or the astrophysical S-factors at higher energies. The situation is even more complicated bythe strong, relatively narrow resonances in some reactions, such as 12C+12C, 12C+16O. Traditionally, optical modelor equivalent square-well optical model (ESW) were used to fit the average cross section and predict the reactioncross sections at the energies of astrophysical interest[1]. Recently, a new model, the hindrance model, was proposedto provide systematic fits to fusion reaction data at extreme sub-barrier energies[2]. Lacking of experimental datawithin this energy range, large discrepancies exist among different nuclear reaction models.展开更多
Nuclear matrix elements(NME) and phase space factors(PSF) entering the half-life formulas of the double-beta decay(DBD) process are two key quantities whose accurate computation still represents a challenge. In this s...Nuclear matrix elements(NME) and phase space factors(PSF) entering the half-life formulas of the double-beta decay(DBD) process are two key quantities whose accurate computation still represents a challenge. In this study, we propose a new approach of calculating these, namely the direct computation of their product as an unique formula. This procedure allows a more coherent treatment of the nuclear approximations and input parameters appearing in both quantities and avoids possible confusion in the interpretation of DBD data due to different individual expressions adopted for PSF and NME(and consequently their reporting in different units) by different authors. Our calculations are performed for both two neutrino(2 vββ) and neutrinoless(0 vββ) decay modes, for five nuclei of the most experimental interest. Further, using the most recent experimental limits for 0νββ decay half-lives,we provide new constraints on the light mass neutrino parameter. Finally, by separating the factor representing the axial-vector constant to the forth power in the half-life formulas, we advance suggestions on how to reduce the errors introduced in the calculation by the uncertain value of this constant, exploiting the DBD data obtained from different isotopes and/or decay modes.展开更多
The product of the ∧0/b (-B/0) differential production cross-section and the branching fraction of the decay ∧0/b→ J/ψ pK-(-B/0→ J/ψ-K*(892)0)is measured as a function of the beauty hadron transverse mome...The product of the ∧0/b (-B/0) differential production cross-section and the branching fraction of the decay ∧0/b→ J/ψ pK-(-B/0→ J/ψ-K*(892)0)is measured as a function of the beauty hadron transverse momentum, PT, and rapidity, y. The kinematic region of the measurements is pT〈20 GeV/c and 2.0 〈g〈4.5.The measurements use a data sample corresponding to an integrated luminosity of 3fb-1 collected by the LHCb detector in pp collisions at centre-of-mass energies √s=7 TeV in 2011 and √s=8 TeV in 2012. Based on previous LHCb results of the fragmentation fraction ratio,f∧0/b/fd,the branching fraction of the decay ∧0/b→ J/ψ pK-is measured to be B(∧0/b→ J/ψ pK-)=(3.17±0.04±0.07±0.34+0.45/-0.28)×10-4,where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay -B/0 →J/ψ-K*(892)0,and the fourth is due to the knowledge of f∧0/b/fd.The sum of the asymmetries in the production and decay between ∧0/b and ∧0/bis also measured as a function of PT and y.The previously published branching fraction of ∧0/b→ J/ψ pπ-,relative to that of ∧0/b→ J/ψ pK-,is updated. The branching fractions of ∧0/b→P+c(→ J/ψp)K-are determined.展开更多
The effects of gamma ray(γ-ray)radiation and electron beam(e-beam)radiation on Rayleigh scattering coefficient in single-mode fiber are experimentally investigated.Utilizing an optical time domain reflectometry(OTDR)...The effects of gamma ray(γ-ray)radiation and electron beam(e-beam)radiation on Rayleigh scattering coefficient in single-mode fiber are experimentally investigated.Utilizing an optical time domain reflectometry(OTDR),the power distribution curves of the irradiated fibers are obtained to retrieve the corresponding radiation-induced attenuation(RIA).Based on the backscattering power levels and the measured RIAs,the Rayleigh scattering coefficients can be characterized quantitatively for each fiber sample.Under the given radiation conditions,Rayleigh scattering coefficients have been changed very little while RIAs have been changed significantly.Furthermore,simulations have been implemented to verify the validity of the measured Rayleigh scattering coefficient,including the splicing points.展开更多
The emission of scission neutrons from fissioning nuclei is of high practical interest.To study this process we have used the sudden approximation and also a more realistic approach that takes into account the scissio...The emission of scission neutrons from fissioning nuclei is of high practical interest.To study this process we have used the sudden approximation and also a more realistic approach that takes into account the scission dynamics.Numerically,this implies the solution of the bi-dimensional Schr¨odinger equation,both stationary and time-dependent.To describe axially symmetric extremely deformed nuclear shapes,we have used the Cassini parametrization.The Hamiltonian is discretized by using finite difference approximations of the derivatives.The main computational challenges are the solution of algebraic eigenvalue problems and of linear systems with large sparse matrices.We have employed appropriate procedures(Arnoldi and bi-conjugate gradients).The numerical solutions have been used to evaluate physical quantities,like the number of emitted neutrons per scission event,the primary fragments’excitation energy and the distribution of the emission points.展开更多
First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark w...First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV.展开更多
A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity...A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity of 2.0fb−1.No significant signal is observed for either decay mode and upper limits on their branching fractions are set using W^(+)→D_(s)^(+)γ and Z→μ+μ−decays as normalization channels.The upper limits are 6.5×10^(−4) and 2.1×10^(−3) at 95% confidence level for the W^(+)→D_(s)^(+)γ and Z→D^(0)γ decay modes,respectively.This is the first reported search for the Z→D^(0)γ decay,while the upper limit on the W+→D+sγbranching fraction improves upon the previous best limit.展开更多
The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in...The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in this measurement correspond to an integrated luminosity of 1.7fb^-1,recorded by the LHCb experiment during 2016.The ratio of the ■ production cross-section times the branching fraction of the■→∧^+cK^-π^+ π^+decay relative to the prompt ∧^+c production cross-section is found to be(2.22±0.27±0.29)×10^-4,assuming the central value of the measured lifetime,where the first uncertainty is statistical and the second systematic.展开更多
The first search for the doubly heavyΩ^(0)_(bc)baryon and a search for the E^(0)_(bc)baryon are performed using pp collision data collected via the LHCb experiment from 2016 to 2018 at a centre-of-mass energy of 13 T...The first search for the doubly heavyΩ^(0)_(bc)baryon and a search for the E^(0)_(bc)baryon are performed using pp collision data collected via the LHCb experiment from 2016 to 2018 at a centre-of-mass energy of 13 TeV,corresponding to an integrated luminosity of 5.2 fb^(-1).The baryons are reconstructed via their decays to Λ^(+)_(c)π^(-)and E^(+)_(c)π^(-).No significant excess is fbund for invariant masses between 6700 and 7300 MeV/c^(2),in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20 MeV/c.Upper limits are set on the ratio of the Ω^(0)_(bc)and E^(0)_(bc)production cross-section times the branching fraction to Λ^(+)_(c)π^(-)(E^(+)_(c)π^(-))relative to that of the Λ^(0)_(b)(E^(0)_(b))baryon,for different lifetime hypotheses,at 95%confidence level.The upper limits range from 0.5 x 10^(-4)to 2.5 x 10^(-4)for theΩ^(0)_(bc)→Λ^(+)_(c)π^(-)(E^(0)_(bc)→Λ^(+)_(c)π^(-))decay,and from 1.4x 10^(-3)to 6.9 x 10^(-3)for theΩ^(0)_(bc)→E^(+)_(c)π^(-)(E^(0)_(bc)→E^(+)_(c)π^(-))decay,depending on the considered mass and lifetime of theΩ^(0)_(bc)(E^(0)_(bc))baryon.展开更多
A first search for the Ξ_(bc)^(+)J/ψΞ_(c)^(+) decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−1 recorded at centre-of-mass...A first search for the Ξ_(bc)^(+)J/ψΞ_(c)^(+) decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−1 recorded at centre-of-mass energies of 7, 8, and 13 TeV. Two peaking structures are seen with a local (global) significance of 4.3(2.8) and 4.1(2.4) standard deviations at masses of 6571 and 6694 MeV/c2, respectively. Upper limits are set on the Ξ+bc baryon production cross-section times the branching fraction relative to that of the B+c→J/ψD+s decay at centre-of-mass energies of 8 and 13 TeV, in the Ξ+bc and in the B+c rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20GeV/c, respectively. Upper limits are presented as a function of the Ξ+bc mass and lifetime.展开更多
A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt(PW)and even 100 PW, capable of reaching intensities of 1023 W/cm^2 in the laser focus. These ultra-hi...A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt(PW)and even 100 PW, capable of reaching intensities of 1023 W/cm^2 in the laser focus. These ultra-high intensities are nevertheless lower than the Schwinger intensity IS= 2.3×1029 W/cm^2 at which the theory of quantum electrodynamics(QED) predicts that a large part of the energy of the laser photons will be transformed to hard Gamma-ray photons and even to matter, via electron–positron pair production. To enable the investigation of this physics at the intensities achievable with the next generation of high power laser facilities, an approach involving the interaction of two colliding PW laser pulses is being adopted. Theoretical simulations predict strong QED effects with colliding laser pulses of 10 PW focused to intensities 10^(22) W/cm^2.展开更多
A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13...A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13 TeV.The data correspond to a total integrated luminosity of 9 fb^-1.No significant signal is observed in the mass range from 3.4 to 3.8 GeV/c^2.Upper limits are set at 95%credibility level on the ratio of the ■^+cc production cross-section times the branching fraction to that ofΛ^+c and ■^++cc baryons.The limits are determined as functions of the ■^+cc mass for different lifetime hypotheses,in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 4 to 15 GeV/c.展开更多
A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No signific...A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No significant signal of the decay is observed and an upper limitof 1.1x 10^(-7)at 90%confidence level is set on the branching fraction.展开更多
基金This work was supported by the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.787539)It was also supported by Grant No.ANR-17-CE30-0026-Pinnacle from the Agence Nationale de la Recherche+6 种基金We acknowledge GENCI,France,for granting us access to HPC resources at TGCC/CCRT(Allocation No.A0010506129)S.N.C.acknowledges support from the Extreme Light Infrastructure Nuclear Physics(ELI-NP)Phase II,a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund-the Competitiveness Operational Programme(1/07 July 2016,COP,ID 1334)by the project ELI-RO-2020-23 funded by IFA(Romania)The PETAL laser was designed and constructed by CEA under the financial auspices of the Conseil Régional d’Aquitaine,the French Ministry of Research,and the European UnionThe CRACC diagnostic was designed and commissioned on the LMJ-PETAL facility as a result of the PETAL+project coordinated by University of Bordeaux and funded by the French Agence Nationale de la Recherche under Grant No.ANR-10-EQPX-42-01The LMJ-PETAL experiment presented in this article was supported by the Association Lasers et Plasmas and by CEAThe diagnostics used in the experiment have been realized in the framework of the EquipEx PETAL+via Contract No.ANR-10-EQPX-0048.
文摘Laser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration.We examine this through particle-in-cell and Monte Carlo simulations that model,respectively,the laser acceleration of protons from thin-foil targets and their subsequent conversion into neutrons in secondary lead targets.Laser parameters relevant to the 0.5 PW LMJ-PETAL and 0.6–6 PW Apollon systems are considered.Owing to its high intensity,the 20-fs-duration 0.6 PW Apollon laser is expected to accelerate protons up to above 100MeV,thereby unlocking efficient neutron generation via spallation reactions.As a result,despite a 30-fold lower pulse energy than the LMJ-PETAL laser,the 0.6 PW Apollon laser should perform comparably well both in terms of neutron yield and flux.Notably,we predict that very compact neutron pulses,of∼10 ps duration and∼100μm spot size,can be released provided the lead convertor target is thin enough(∼100μm).These sources are characterized by extreme fluxes,of the order of 10^(23) n cm^(−2) s^(−1),and even ten times higher when using the 6 PW Apollon laser.Such values surpass those currently achievable at large-scale accelerator-based neutron sources(∼10^(16) n cm^(−2) s^(−1)),or reported from previous laser experiments using low-Z converters(∼10^(18) n cm^(−2) s^(−1)).By showing that such laser systems can produce neutron pulses significantly brighter than existing sources,our findings open a path toward attractive novel applications,such as flash neutron radiography and laboratory studies of heavy-ion nucleosynthesis.
文摘Heavy-ion fusion reactions between light nuclei such as carbon and oxygen isotopes have been studied becauseof their importance in a wide variety of stellar burning scenarios. However, due to extremely low cross sectionsand signal/background ratio, all the measurements could only be carried out at energies well above the regionof astrophysical interest. The reaction rates in stellar environment could be estimated only by extrapolating theexisted cross sections or the astrophysical S-factors at higher energies. The situation is even more complicated bythe strong, relatively narrow resonances in some reactions, such as 12C+12C, 12C+16O. Traditionally, optical modelor equivalent square-well optical model (ESW) were used to fit the average cross section and predict the reactioncross sections at the energies of astrophysical interest[1]. Recently, a new model, the hindrance model, was proposedto provide systematic fits to fusion reaction data at extreme sub-barrier energies[2]. Lacking of experimental datawithin this energy range, large discrepancies exist among different nuclear reaction models.
基金Supported by Ministry of Research and Innovation through UEFISCDI,project PCE-2016-0078,contract 198/2017
文摘Nuclear matrix elements(NME) and phase space factors(PSF) entering the half-life formulas of the double-beta decay(DBD) process are two key quantities whose accurate computation still represents a challenge. In this study, we propose a new approach of calculating these, namely the direct computation of their product as an unique formula. This procedure allows a more coherent treatment of the nuclear approximations and input parameters appearing in both quantities and avoids possible confusion in the interpretation of DBD data due to different individual expressions adopted for PSF and NME(and consequently their reporting in different units) by different authors. Our calculations are performed for both two neutrino(2 vββ) and neutrinoless(0 vββ) decay modes, for five nuclei of the most experimental interest. Further, using the most recent experimental limits for 0νββ decay half-lives,we provide new constraints on the light mass neutrino parameter. Finally, by separating the factor representing the axial-vector constant to the forth power in the half-life formulas, we advance suggestions on how to reduce the errors introduced in the calculation by the uncertain value of this constant, exploiting the DBD data obtained from different isotopes and/or decay modes.
基金Supported by CERN and national agencies:CAPES,CNPq,FAPERJ and FINEP(Brazil)NSFC(China)+17 种基金CNRS/IN2P3(France)BMBF,DFG,HGF and MPG(Germany)INFN(Italy)FOM and NWO(The Netherlands)MNi SW and NCN(Poland)MEN/IFA(Romania)Min ES and FANO(Russia)Min ECo(Spain)SNSF and SER(Switzerland)NASU(Ukraine)STFC(United Kingdom)NSF(USA)supported by IN2P3(France),KIT and BMBF(Germany),INFN(Italy),NWOSURF(The Netherlands),PIC(Spain),Grid PP(United Kingdom)support from EPLANET,Marie Sk lodowska-Curie ActionsERC(European Union),Conseil général de Haute-Savoie,Labex ENIGMASS and OCEVU,RégionAuvergne(France),RFBR(Russia),Xunta GalGENCAT(Spain),Royal Society and Royal Commission for the Exhibition of 1851(United Kingdom)
文摘The product of the ∧0/b (-B/0) differential production cross-section and the branching fraction of the decay ∧0/b→ J/ψ pK-(-B/0→ J/ψ-K*(892)0)is measured as a function of the beauty hadron transverse momentum, PT, and rapidity, y. The kinematic region of the measurements is pT〈20 GeV/c and 2.0 〈g〈4.5.The measurements use a data sample corresponding to an integrated luminosity of 3fb-1 collected by the LHCb detector in pp collisions at centre-of-mass energies √s=7 TeV in 2011 and √s=8 TeV in 2012. Based on previous LHCb results of the fragmentation fraction ratio,f∧0/b/fd,the branching fraction of the decay ∧0/b→ J/ψ pK-is measured to be B(∧0/b→ J/ψ pK-)=(3.17±0.04±0.07±0.34+0.45/-0.28)×10-4,where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay -B/0 →J/ψ-K*(892)0,and the fourth is due to the knowledge of f∧0/b/fd.The sum of the asymmetries in the production and decay between ∧0/b and ∧0/bis also measured as a function of PT and y.The previously published branching fraction of ∧0/b→ J/ψ pπ-,relative to that of ∧0/b→ J/ψ pK-,is updated. The branching fractions of ∧0/b→P+c(→ J/ψp)K-are determined.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.41527805 and 61635005)Sichuan Youth Science and Technology Foundation(Grant No.2016JQ0034)+3 种基金the 111 Project(Grant No.B14039)The Romanian authors acknowledge the support of the Romanian Executive Agency for Higher Education,Research,Development and Innovation Funding(Grant No.UEFISCDI),under the contract“Sensor Systems for Secure Operation of Critical Installations”.G.Peng acknowledges the support by Science and Technology Commission of Shanghai Municipality,China(Grant Nos.SKLSFO2015-01 and 15220721500)by the Hisilicon Innovation Research Program(HIRP)(Grant No.HO2017050001CZ).
文摘The effects of gamma ray(γ-ray)radiation and electron beam(e-beam)radiation on Rayleigh scattering coefficient in single-mode fiber are experimentally investigated.Utilizing an optical time domain reflectometry(OTDR),the power distribution curves of the irradiated fibers are obtained to retrieve the corresponding radiation-induced attenuation(RIA).Based on the backscattering power levels and the measured RIAs,the Rayleigh scattering coefficients can be characterized quantitatively for each fiber sample.Under the given radiation conditions,Rayleigh scattering coefficients have been changed very little while RIAs have been changed significantly.Furthermore,simulations have been implemented to verify the validity of the measured Rayleigh scattering coefficient,including the splicing points.
基金supported by the contracts PNCDI2-Parteneriate 71-112 and PN09370102 of the Romanian Ministry of Education and Research.
文摘The emission of scission neutrons from fissioning nuclei is of high practical interest.To study this process we have used the sudden approximation and also a more realistic approach that takes into account the scission dynamics.Numerically,this implies the solution of the bi-dimensional Schr¨odinger equation,both stationary and time-dependent.To describe axially symmetric extremely deformed nuclear shapes,we have used the Cassini parametrization.The Hamiltonian is discretized by using finite difference approximations of the derivatives.The main computational challenges are the solution of algebraic eigenvalue problems and of linear systems with large sparse matrices.We have employed appropriate procedures(Arnoldi and bi-conjugate gradients).The numerical solutions have been used to evaluate physical quantities,like the number of emitted neutrons per scission event,the primary fragments’excitation energy and the distribution of the emission points.
文摘First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV.
文摘A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity of 2.0fb−1.No significant signal is observed for either decay mode and upper limits on their branching fractions are set using W^(+)→D_(s)^(+)γ and Z→μ+μ−decays as normalization channels.The upper limits are 6.5×10^(−4) and 2.1×10^(−3) at 95% confidence level for the W^(+)→D_(s)^(+)γ and Z→D^(0)γ decay modes,respectively.This is the first reported search for the Z→D^(0)γ decay,while the upper limit on the W+→D+sγbranching fraction improves upon the previous best limit.
基金Supported by CERNnational agencies:CAPES+30 种基金CNPqFAPERJFINEP(Brazil)MOSTNSFC(China)CNRS/IN2P3(France)BMBFDFGMPG(Germany)INFN(Italy)NWO(Netherlands)MNiSWNCN(Poland)MEN/IFA(Romania)MSHE(Russia)MinECo(Spain)SNSFSER(Switzerland)NASU(Ukraine)STFC(United Kingdom)DOE NPNSF(USA)Key Research Program of Frontier Sciences of CAS,CAS PIFIthe Thousand Talents Program(China)RFBRRSFYandex LLC(Russia)GVAXuntaGalGENCAT(Spain)the Royal Society and the Leverhulme Trust(United Kingdom)
文摘The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in this measurement correspond to an integrated luminosity of 1.7fb^-1,recorded by the LHCb experiment during 2016.The ratio of the ■ production cross-section times the branching fraction of the■→∧^+cK^-π^+ π^+decay relative to the prompt ∧^+c production cross-section is found to be(2.22±0.27±0.29)×10^-4,assuming the central value of the measured lifetime,where the first uncertainty is statistical and the second systematic.
基金CAPES,CNPq,FAPERJ and FINEP(Brazil)MOST and NSFC(China)+18 种基金CNRS/IN2P3(France)BMBF,DFG,MPG(Germany)INFN(Italy)NWO(Netherlands)MNiSW,NCN(Poland)MEN/IFA(Romania)MSHE(Russia)MICINN(Spain)SNSF,SER(Switzerland)NASU(Ukraine)STFC(United Kingdom)DOE NP,NSF(USA).We acknowledge the computing resources that are provided by CERN,IN2P3(France),KIT and DESY(Germany),INFN(Italy),SURF(Netherlands),PIC(Spain),GridPP(United Kingdom),RRCKI and Yandex LLC(Russia),CSCS(Switzerland),IFIN-HH(Romania),CBPF(Brazil),PL-GRID(Poland)and NERSC(USA)AvH Foundation(Germany)EPLANET,Marie Sklodowska-Curie Actions and ERC(European Union)A*MIDEX,ANR,Labex P2IO and OCEVU,Region Auvergne-Rhdne-Alpes(France)Key Research Program of Frontier Sciences of CAS,CAS PIFI,CAS CCEPP,Fundamental Research Funds for the Central Universities,and Sci.Tech.Program of Guangzhou(China)RFBR,RSF and Yandex LLC(Russia)GVA,XuntaGal,GENCAT(Spain)the Leverhulme Trust,the Royal Society and UKRI(United Kingdom)。
文摘The first search for the doubly heavyΩ^(0)_(bc)baryon and a search for the E^(0)_(bc)baryon are performed using pp collision data collected via the LHCb experiment from 2016 to 2018 at a centre-of-mass energy of 13 TeV,corresponding to an integrated luminosity of 5.2 fb^(-1).The baryons are reconstructed via their decays to Λ^(+)_(c)π^(-)and E^(+)_(c)π^(-).No significant excess is fbund for invariant masses between 6700 and 7300 MeV/c^(2),in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20 MeV/c.Upper limits are set on the ratio of the Ω^(0)_(bc)and E^(0)_(bc)production cross-section times the branching fraction to Λ^(+)_(c)π^(-)(E^(+)_(c)π^(-))relative to that of the Λ^(0)_(b)(E^(0)_(b))baryon,for different lifetime hypotheses,at 95%confidence level.The upper limits range from 0.5 x 10^(-4)to 2.5 x 10^(-4)for theΩ^(0)_(bc)→Λ^(+)_(c)π^(-)(E^(0)_(bc)→Λ^(+)_(c)π^(-))decay,and from 1.4x 10^(-3)to 6.9 x 10^(-3)for theΩ^(0)_(bc)→E^(+)_(c)π^(-)(E^(0)_(bc)→E^(+)_(c)π^(-))decay,depending on the considered mass and lifetime of theΩ^(0)_(bc)(E^(0)_(bc))baryon.
基金The project support from CERN and from the national agencies:CAPES,CNPq,FAPERJ and FINEP(Brazil)MOST and NSFC(China)+18 种基金CNRS/IN2P3(France)BMBF,DFG and MPG(Germany)INFN(Italy)NWO(Netherlands)MNiSW and NCN(Poland)MEN/IFA(Romania)MICINN(Spain)SNSF and SER(Switzerland)NASU(Ukraine)STFC(United Kingdom)DOE NP and NSF(USA).We acknowledge the computing resources that are provided by CERN,IN2P3(France),KIT and DESY(Germany),INFN(Italy),SURF(Netherlands),PIC(Spain),GridPP(United Kingdom),CSCS(Switzerland),IFIN-HH(Romania),CBPF(Brazil),Polish WLCG(Poland)and NERSC(USA).Individual groups or members have received support from ARC and ARDC(Australia)Minciencias(Colombia)AvH Foundation(Germany)EPLANET,Marie Sklodowska-Curie Actions and ERC(European Union)A*MIDEX,ANR,IPhU and Labex P2IO,and Région Auvergne-RhôneAlpes(France)Key Research Program of Frontier Sciences of CAS,CAS PIFI,CAS CCEPP,Fundamental Research Funds for the Central Universities,and Sci.&Tech.Program of Guangzhou(China)GVA,XuntaGal,GENCAT and Prog.Atracción Talento,CM(Spain)SRC(Sweden)the Leverhulme Trust,the Royal Society and UKRI(United Kingdom).
文摘A first search for the Ξ_(bc)^(+)J/ψΞ_(c)^(+) decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−1 recorded at centre-of-mass energies of 7, 8, and 13 TeV. Two peaking structures are seen with a local (global) significance of 4.3(2.8) and 4.1(2.4) standard deviations at masses of 6571 and 6694 MeV/c2, respectively. Upper limits are set on the Ξ+bc baryon production cross-section times the branching fraction relative to that of the B+c→J/ψD+s decay at centre-of-mass energies of 8 and 13 TeV, in the Ξ+bc and in the B+c rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20GeV/c, respectively. Upper limits are presented as a function of the Ξ+bc mass and lifetime.
基金support from the National Key Research and Development Program of China(No.2016YFA0300803)support from the Project of Shanghai HIgh repetition rate XFEL aNd Extreme light facility(SHINE)+13 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB16)support from the EPSRC,UK(Nos.EP/L013975 and EP/N022696/1)support from Extreme Light Infrastructure Nuclear Physics(ELI-NP) Phase IIa project co-financed by the Romanian Government and the European Union through the European Regional Development Fundsupport from EPSRC(No.EP/M018091/1)support from EPSRC(No.EP/M018555/1)STFC(Nos.ST/J002062/1 and ST/P002021/1)Horizon2020 funding from the European Research Council(ERC)(No.682399)support from the National Natural Science Foundation of China(Nos.11622547,11875319,11875091,11474360,and 11175255)the National Key Research and Development Program of China(No.2018YFA0404802)the Science Challenge Program(No.TZ2016005)the Hunan Province Science and Technology Program of China(No.2017RS3042)supported by the National Natural Science Foundation of China(Nos.11347028,11405083,and 11675075)UK Engineering and Physics Sciences Research Council(Nos.EP/G054940/1,EP/G055165/1,and EP/G056803/1)
文摘A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt(PW)and even 100 PW, capable of reaching intensities of 1023 W/cm^2 in the laser focus. These ultra-high intensities are nevertheless lower than the Schwinger intensity IS= 2.3×1029 W/cm^2 at which the theory of quantum electrodynamics(QED) predicts that a large part of the energy of the laser photons will be transformed to hard Gamma-ray photons and even to matter, via electron–positron pair production. To enable the investigation of this physics at the intensities achievable with the next generation of high power laser facilities, an approach involving the interaction of two colliding PW laser pulses is being adopted. Theoretical simulations predict strong QED effects with colliding laser pulses of 10 PW focused to intensities 10^(22) W/cm^2.
基金support from CERN and from the national agencies:CAPES,CNPq,FAPERJ and FINEP(Brazil)MOST and NSFC(China)+11 种基金CNRS/IN2P3(France)BMBF,DFG and MPG(Germany)INFN(Italy)KWO(Netherlands)MNiSW and NCN(Poland)MEN/IFA(Romania)MinES and FASO(Russia)MinECo(Spain)SNSF and SER(Switzerland)NASU(Ukraine)STFC(United Kingdom)NSF(USA).
文摘A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13 TeV.The data correspond to a total integrated luminosity of 9 fb^-1.No significant signal is observed in the mass range from 3.4 to 3.8 GeV/c^2.Upper limits are set at 95%credibility level on the ratio of the ■^+cc production cross-section times the branching fraction to that ofΛ^+c and ■^++cc baryons.The limits are determined as functions of the ■^+cc mass for different lifetime hypotheses,in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 4 to 15 GeV/c.
基金support from AvH Foundation(Germany)EPLANET,Marie Sk lodowska-Curie Actions and ERC(European Union)+11 种基金A*MIDEXANRLabex P2IOOCEVURégion Auvergne-Rh?ne-Alpes(France)Key Research Program of Frontier Sciences of CASCAS PIFIThousand Talents ProgramSci.&Tech.Program of Guangzhou(China)RFBR,RSF and Yandex LLC(Russia)GVA,Xunta Gal and GENCAT(Spain)the Royal Society and the Leverhulme Trust(United Kingdom)。
文摘A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No significant signal of the decay is observed and an upper limitof 1.1x 10^(-7)at 90%confidence level is set on the branching fraction.