A mathematical model of two-dimensional flows of PIM derived from the momentum, continuity equations and theheat transfer equation is obtained. The formula of calculating the flow conductance and the pressure equation...A mathematical model of two-dimensional flows of PIM derived from the momentum, continuity equations and theheat transfer equation is obtained. The formula of calculating the flow conductance and the pressure equation arededuced when the no slip boundary condition is employed at the wall, and the pressure equation is a non-linearelliptic partial differential equation. The flow front locations, distribution of velocities, temperature and pressure aresimulated by the finite element analysis software ANSYS. Simulation results indicate that it is in the final filled partthat defects appear easily. The region in which the defects may occur during the PIM process can be predicted.展开更多
文摘A mathematical model of two-dimensional flows of PIM derived from the momentum, continuity equations and theheat transfer equation is obtained. The formula of calculating the flow conductance and the pressure equation arededuced when the no slip boundary condition is employed at the wall, and the pressure equation is a non-linearelliptic partial differential equation. The flow front locations, distribution of velocities, temperature and pressure aresimulated by the finite element analysis software ANSYS. Simulation results indicate that it is in the final filled partthat defects appear easily. The region in which the defects may occur during the PIM process can be predicted.