This work studies the ionic conductivity of nanosized Gd-, Sm-, and Y-doped ceria prepared by the infiltration/impregnation method. The nanoparticles were deposited onto porous pure ceria substrates via infiltration- ...This work studies the ionic conductivity of nanosized Gd-, Sm-, and Y-doped ceria prepared by the infiltration/impregnation method. The nanoparticles were deposited onto porous pure ceria substrates via infiltration- heating processes, and the conductivity was determined with the electrochemical impedance spectroscopy (EIS) using the conductive model for infiltrated phases. The conductivity of the infiltrated doped ceria changes with the doping amount, and Gd0.25Ce0.75O2-δ, Sm0.2Ce0.8O2-δ, and Y0.15Ce0.85O2-δ show the highest values of 2.56, 3.01, and 2.07 × 10-3 S.cm-1 at 600 ℃, respectively. Overall, Sin-doped samples show the highest conductivity, whileY-doped samples show the lowest conductivity. In con- sideration of the Bruggeman factor, the intrinsic conduc- tivity of the infiltrated doped ceria was calculated. Compared with the bulk doped ceria, the intrinsic con- ductivity is higher while the activation energy is lower, which may suggest different conduction mechanisms. Besides, co-doping effects on the conductivity of the infiltrated sample are less obvious than those of the bulk sample.展开更多
基金financially supported by the China Postdoctoral Science Foundation-Chinese Academy of Sciences(CPSF-CAS)Joint Foundation for Excellent Postdoctoral Fellowsthe National Natural Science Foundation for Distinguished Young Scholars of China (No.51625204)the National Nature Science Foundation of China (91645101)
文摘This work studies the ionic conductivity of nanosized Gd-, Sm-, and Y-doped ceria prepared by the infiltration/impregnation method. The nanoparticles were deposited onto porous pure ceria substrates via infiltration- heating processes, and the conductivity was determined with the electrochemical impedance spectroscopy (EIS) using the conductive model for infiltrated phases. The conductivity of the infiltrated doped ceria changes with the doping amount, and Gd0.25Ce0.75O2-δ, Sm0.2Ce0.8O2-δ, and Y0.15Ce0.85O2-δ show the highest values of 2.56, 3.01, and 2.07 × 10-3 S.cm-1 at 600 ℃, respectively. Overall, Sin-doped samples show the highest conductivity, whileY-doped samples show the lowest conductivity. In con- sideration of the Bruggeman factor, the intrinsic conduc- tivity of the infiltrated doped ceria was calculated. Compared with the bulk doped ceria, the intrinsic con- ductivity is higher while the activation energy is lower, which may suggest different conduction mechanisms. Besides, co-doping effects on the conductivity of the infiltrated sample are less obvious than those of the bulk sample.