We have proposed a novel noncontact ultrasonic motor based on non-syinmetrical electrode driving. The configuration of this electrode and the fabrication process of rotors are presented. Its vibration characteristics ...We have proposed a novel noncontact ultrasonic motor based on non-syinmetrical electrode driving. The configuration of this electrode and the fabrication process of rotors are presented. Its vibration characteristics are computed and analysed by using the finite element method and studied experimentally. Good agreement between them is obtained. Moreover, it is also shown that this noncontact ultrasonic motor is operated in antisymmetric radial vibration mode of B21 mode. The maximum revolution speed for three-blade and six-blade rotors are 5100 and 3700r/min at an input voltage of 20V, respectively. Also, the noncontact high-speed revolution of the rotors can be realized by the parts of Ⅰ, Ⅲ of the electrode or Ⅱ, Ⅳ of the electrode. The levitation distance between the s tator and rotor is about 140μm according to the theoretical calculation and the experimental measurement.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 50205017).
文摘We have proposed a novel noncontact ultrasonic motor based on non-syinmetrical electrode driving. The configuration of this electrode and the fabrication process of rotors are presented. Its vibration characteristics are computed and analysed by using the finite element method and studied experimentally. Good agreement between them is obtained. Moreover, it is also shown that this noncontact ultrasonic motor is operated in antisymmetric radial vibration mode of B21 mode. The maximum revolution speed for three-blade and six-blade rotors are 5100 and 3700r/min at an input voltage of 20V, respectively. Also, the noncontact high-speed revolution of the rotors can be realized by the parts of Ⅰ, Ⅲ of the electrode or Ⅱ, Ⅳ of the electrode. The levitation distance between the s tator and rotor is about 140μm according to the theoretical calculation and the experimental measurement.