Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t...Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.展开更多
Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In...Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In this paper, we propose a video-based crowd density analysis and prediction system for wide-area surveillance applications. In monocular image sequences, the Accumulated Mosaic Image Difference (AMID) method is applied to extract crowd areas having irregular motion. The specific number of persons and velocity of a crowd can be adequately estimated by our system from the density of crowded areas. Using a multi-camera network, we can obtain predictions of a crowd's density several minutes in advance. The system has been used in real applications, and numerous experiments conducted in real scenes (station, park, plaza) demonstrate the effectiveness and robustness of the proposed method.展开更多
Audio-visual learning,aimed at exploiting the relationship between audio and visual modalities,has drawn considerable attention since deep learning started to be used successfully.Researchers tend to leverage these tw...Audio-visual learning,aimed at exploiting the relationship between audio and visual modalities,has drawn considerable attention since deep learning started to be used successfully.Researchers tend to leverage these two modalities to improve the performance of previously considered single-modality tasks or address new challenging problems.In this paper,we provide a comprehensive survey of recent audio-visual learning development.We divide the current audio-visual learning tasks into four different subfields:audiovisual separation and localization,audio-visual correspondence learning,audio-visual generation,and audio-visual representation learning.State-of-the-art methods,as well as the remaining challenges of each subfield,are further discussed.Finally,we summarize the commonly used datasets and challenges.展开更多
Pointwise convolution is usually utilized to expand or squeeze features in modern lightweight deep models.However,it takes up most of the overall computational cost(usually more than 90%).This paper proposes a novel P...Pointwise convolution is usually utilized to expand or squeeze features in modern lightweight deep models.However,it takes up most of the overall computational cost(usually more than 90%).This paper proposes a novel Poker module to expand features by taking advantage of cheap depthwise convolution.As a result,the Poker module can greatly reduce the computational cost,and meanwhile generate a large number of effective features to guarantee the performance.The proposed module is standardized and can be employed wherever the feature expansion is needed.By varying the stride and the number of channels,different kinds of bottlenecks are designed to plug the proposed Poker module into the network.Thus,a lightweight model can be easily assembled.Experiments conducted on benchmarks reveal the effectiveness of our proposed Poker module.And our Poker Net models can reduce the computational cost by 7.1%-15.6%.Poker Net models achieve comparable or even higher recognition accuracy than previous state-of-the-art(SOTA)models on the Image Net ILSVRC2012 classification dataset.Code is available at https://github.com/diaomin/pokernet.展开更多
基金supported in part by the Major Project for New Generation of AI (2018AAA0100400)the National Natural Science Foundation of China (61836014,U21B2042,62072457,62006231)the InnoHK Program。
文摘Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.
基金supported by the National Natural Science Foundation of China under Grant No. 61175007the National Key Technologies R&D Program under Grant No. 2012BAH07B01the National Key Basic Research Program of China (973 Program) under Grant No. 2012CB316302
文摘Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In this paper, we propose a video-based crowd density analysis and prediction system for wide-area surveillance applications. In monocular image sequences, the Accumulated Mosaic Image Difference (AMID) method is applied to extract crowd areas having irregular motion. The specific number of persons and velocity of a crowd can be adequately estimated by our system from the density of crowded areas. Using a multi-camera network, we can obtain predictions of a crowd's density several minutes in advance. The system has been used in real applications, and numerous experiments conducted in real scenes (station, park, plaza) demonstrate the effectiveness and robustness of the proposed method.
基金supported by National Key Research and Development Program of China(No.2016YFB1001001)Beijing Natural Science Foundation(No.JQ18017)National Natural Science Foundation of China(No.61976002)。
文摘Audio-visual learning,aimed at exploiting the relationship between audio and visual modalities,has drawn considerable attention since deep learning started to be used successfully.Researchers tend to leverage these two modalities to improve the performance of previously considered single-modality tasks or address new challenging problems.In this paper,we provide a comprehensive survey of recent audio-visual learning development.We divide the current audio-visual learning tasks into four different subfields:audiovisual separation and localization,audio-visual correspondence learning,audio-visual generation,and audio-visual representation learning.State-of-the-art methods,as well as the remaining challenges of each subfield,are further discussed.Finally,we summarize the commonly used datasets and challenges.
基金supported by National Natural Science Foundation of China(Nos.61525306,61633021,61721004,61806194,U1803261 and 61976132)Major Project for New Generation of AI(No.2018AAA0100400)+2 种基金Beijing Nova Program(No.Z201100006820079)Shandong Provincial Key Research and Development Program(No.2019JZZY010119)CAS-AIR。
文摘Pointwise convolution is usually utilized to expand or squeeze features in modern lightweight deep models.However,it takes up most of the overall computational cost(usually more than 90%).This paper proposes a novel Poker module to expand features by taking advantage of cheap depthwise convolution.As a result,the Poker module can greatly reduce the computational cost,and meanwhile generate a large number of effective features to guarantee the performance.The proposed module is standardized and can be employed wherever the feature expansion is needed.By varying the stride and the number of channels,different kinds of bottlenecks are designed to plug the proposed Poker module into the network.Thus,a lightweight model can be easily assembled.Experiments conducted on benchmarks reveal the effectiveness of our proposed Poker module.And our Poker Net models can reduce the computational cost by 7.1%-15.6%.Poker Net models achieve comparable or even higher recognition accuracy than previous state-of-the-art(SOTA)models on the Image Net ILSVRC2012 classification dataset.Code is available at https://github.com/diaomin/pokernet.