Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an effic...Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.展开更多
Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors,...Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors, face challenges in simultaneously achieving initial metallic state and strain-induced insulating state, hindering the development of highly sensitive mechanical sensors. Here we report an ultrasensitive mechanical sensor based on a strain-induced tunable ordered array of metallic and insulating states in the single-crystal bronze-phase vanadium dioxide [VO_(2)(B)] quantum material. It is shown that the initial metallic state in the VO_(2)(B) flake can be tuned to the insulating state by applying a weak uniaxial tensile strain. Such a unique property gives rise to a record-high gauge factor of above 607970, surpassing previous values by an order of magnitude, with excellent linearity and mechanical resilience as well as durability. As a proof-of-concept application, we use our proposed mechanical sensor to demonstrate precise sensing of the micro piece, gentle airflows and water droplets. We attribute the superior performance of the sensor to the strain-induced continuous metal-insulator transition in the single-crystal VO_(2)(B) flake, evidenced by experimental and simulation results. Our findings highlight the potential of exploiting correlated quantum materials for next-generation ultrasensitive flexible mechanical sensors, addressing critical limitations in traditional materials.展开更多
InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hinder...InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications.展开更多
Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to ver...Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.展开更多
Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such ...Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module.展开更多
Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the in...Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.展开更多
The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the wid...The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.展开更多
High-order quantum coherence reveals the statistical correlation of quantum particles. Manipulation of quantum coherence of light in the temporal domain enables the production of the single-photon source, which has be...High-order quantum coherence reveals the statistical correlation of quantum particles. Manipulation of quantum coherence of light in the temporal domain enables the production of the single-photon source, which has become one of the most important quantum resources. High-order quantum coherence in the spatial domain plays a crucial role in a variety of applications, such as quantum imaging, holography, and microscopy. However, the active control of second-order spatial quantum coherence remains a challenging task. Here we predict theoretically and demonstrate experimentally the first active manipulation of second-order spatial quantum coherence,which exhibits the capability of switching between bunching and anti-bunching, by mapping the entanglement of spatially structured photons. We also show that signal processing based on quantum coherence exhibits robust resistance to intensity disturbance. Our findings not only enhance existing applications but also pave the way for broader utilization of higher-order spatial quantum coherence.展开更多
Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with recons...Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with reconstruction algorithm, weak values were proposed to directly measure density matrix elements of quantum state. Recently, similar to the concept of weak value, modular values were introduced to extend the direct measurement scheme to nonlocal quantum wavefunction. However, this method still involves approximations, which leads to inherent low precision. Here, we propose a new scheme which enables direct measurement for ideal value of the nonlocal density matrix element without taking approximations. Our scheme allows more accurate characterization of nonlocal quantum states, and therefore has greater advantages in practical measurement scenarios.展开更多
One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors.Since geometric quantum gate is naturally insensitivity to noise,it appears to be a prom...One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors.Since geometric quantum gate is naturally insensitivity to noise,it appears to be a promising routine to achieve high-fidelity,robust quantum gates.The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels.Moreover,traditional geometric schemes usually take more time than equivalent dynamical ones.Here,we experimentally demonstrate a geometric gate scheme with the time-optimal control(TOC)technique in a superconducting quantum circuit.With a transmon qubit and operations restricted to two computational levels,we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts.The measured fidelities of TOC X gate and X/2 gate are 99.81%and 99.79%respectively.Our work shows a promising routine toward scalable fault-tolerant quantum computation.展开更多
One hallmark of Weyl semimetals is the emergence of Fermi arcs(FAs) in surface Brillouin zones, where FAs connect the projected Weyl nodes of opposite chiralities. Unclosed FAs can give rise to various exotic effects ...One hallmark of Weyl semimetals is the emergence of Fermi arcs(FAs) in surface Brillouin zones, where FAs connect the projected Weyl nodes of opposite chiralities. Unclosed FAs can give rise to various exotic effects that have attracted tremendous research interest. Configurations of FAs are usually thought to be determined fully by the band topology of the bulk states, which seems impossible to manipulate. Here, we show that FAs can be simply modified by a surface gate voltage. Because the penetration length of the surface states depends on the in-plane momentum, a surface gate voltage induces an effective energy dispersion. As a result, a continuous deformation of the surface band can be implemented by tuning the surface gate voltage. In particular, as the saddle point of the surface band meets the Fermi energy, the topological Lifshitz transition takes place for the FAs,during which the Weyl nodes switch their partners connected by the FAs. Accordingly, the magnetic Weyl orbits composed of the FAs on opposite surfaces and chiral Landau bands inside the bulk change their configurations.We show that such an effect can be probed by the transport measurements in a magnetic field, in which the switch-on and switch-off conductances by the surface gate voltage signal the Lifshitz transition. Our work opens a new route for manipulating the FAs by surface gates and exploring novel transport phenomena associated with the topological Lifshitz transition.展开更多
Chiral magnetic states are promising for future spintronic applications. Recent progress of chiral spin textures in two-dimensional magnets, such as chiral domain walls, skyrmions, and bimerons, have been drawing exte...Chiral magnetic states are promising for future spintronic applications. Recent progress of chiral spin textures in two-dimensional magnets, such as chiral domain walls, skyrmions, and bimerons, have been drawing extensive attention. Here, via first-principles calculations, we show that biaxial strain can effectively manipulate the magnetic parameters of the Janus Mn Se Te monolayer. Interestingly, we find that both the magnitude and the sign of the magnetic constants of the Heisenberg exchange coupling, Dzyaloshinskii–Moriya interaction and magnetocrystalline anisotropy can be tuned by strain. Moreover, using micromagnetic simulations, we obtain the distinct phase diagram of chiral spin texture under different strains. Especially, we demonstrate that abundant chiral magnetic structures including ferromagnetic skyrmion, skyrmionium, bimeron, and antiferromagnetic spin spiral can be induced in the Mn Se Te monolayer. We also discuss the effect of temperature on these magnetic structures. The findings highlight the Janus Mn Se Te monolayer as a good candidate for spintronic nanodevices.展开更多
Motivated by the recent measurements of the spatial distribution of single particle excitation states in a hole-doped Mott insulator,we study the effects of impurity on the in-gap states,induced by the doped holes,in ...Motivated by the recent measurements of the spatial distribution of single particle excitation states in a hole-doped Mott insulator,we study the effects of impurity on the in-gap states,induced by the doped holes,in the Hubbard model on the square lattice by the cluster perturbation theory.We find that a repulsive impurity potential can move the in-gap state from the lower Hubbard band towards the upper Hubbard band,providing a good account for the experimental observation.The distribution of the spectral function in the momentum space can be used to discriminate the in-gap state induced by doped holes and that by the impurity.The spatial characters of the in-gap states in the presence of two impurities are also discussed and compared to the experiment.展开更多
We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phas...We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.展开更多
Layered material TaS2hosts multiple structural phases and exotic correlated quantum states,including charge density wave(CDW),superconductivity,quantum spin liquid,and Mott insulating state.Here,we synthesized TaS_(2)...Layered material TaS2hosts multiple structural phases and exotic correlated quantum states,including charge density wave(CDW),superconductivity,quantum spin liquid,and Mott insulating state.Here,we synthesized TaS_(2)monolayers in H and T phases using the molecular beam epitaxial(MBE)method and studied their electronic structures via angle-resolved photoemission spectroscopy(ARPES).We found that the H phase TaS_(2)(H-TaS_(2))monolayer is metallic,with an energy band crossing the Fermi level.In contrast,the T phase TaS_(2)(T-TaS_(2))monolayer shows an insulated energy gap at the Fermi level,while the normal calculated band structure implies it should be metallic without any band gap.However,by considering Hubbard interaction potential U,further density functional theory(DFT)calculation suggests that monolayer T-TaS_(2)could be a CDW Mott insulator,and the DFT+U calculation matches well with the ARPES result.More significantly,the temperature-dependent ARPES result indicates that the CDW Mott state in the T-TaS_(2)monolayer is more robust than its bulk counterpart and can persist at room temperature.Our results reveal that the dimensional effect can enhance the CDW Mott state and provide valuable insights for further exploring the exotic properties of monolayer TaS2.展开更多
There remain a number of unsolved problems about chemical reactions, and it is significant to explore new detection methods because they always offer some unique information about reactions from new points of view. Fo...There remain a number of unsolved problems about chemical reactions, and it is significant to explore new detection methods because they always offer some unique information about reactions from new points of view. For the first time, the solidification course of a modified two-component acrylic structural adhesive is measured by using reed-vibration mechanical spectroscopy for liquids (RMS-L) in this work, and results show that there are four sequential processes of mechanical spectra with time. The in-depth analyses indicate that RMS-L can detect in real-time the generation and disappearance of active free radicals, as well as the chemical cross-link processes in the adhesive. This kind of real-time detection will undoubtedly facilitate the study of the chemical reaction dynamics controlled by free radicals.展开更多
Linear alkylbenzene(LAB) will be used as solvent for the liquid scintillator in the central detector of Jiangmen Underground Neutrino Observatory. The sheer size of the detector imposes significant challenges and the ...Linear alkylbenzene(LAB) will be used as solvent for the liquid scintillator in the central detector of Jiangmen Underground Neutrino Observatory. The sheer size of the detector imposes significant challenges and the necessity to further improve the optical transparency of high-quality LAB. In order to study high optical transparencies, we continuously improve our measurement setup and use monochromatic light to measure the attenuation lengths of LAB samples. Moreover, the effects of organic impurities on LAB samples are studied to understand their interaction mechanisms and further improve the optical transparency of LAB.展开更多
Nanocrystalline Ge (nc-Ge) single layers and nc-Ge/SiNx multilayers are prepared by laser annealing amorphous Ge (a-Ge) films and a-Ge/SiNx multilayers. The microstructures as well as the electrical properties of ...Nanocrystalline Ge (nc-Ge) single layers and nc-Ge/SiNx multilayers are prepared by laser annealing amorphous Ge (a-Ge) films and a-Ge/SiNx multilayers. The microstructures as well as the electrical properties of laser-crystallized samples are systematically studied by using various techniques. It is found that the optical band gap of nc-Ge film is reduced compared with its amorphous counterpart. The formed nc-Ge film is of p-type, and the dark conductivity is enhanced by 6 orders for an nc-Ge single layer and 4 orders for a multilayer. It is suggested that the carrier transport mechanism is dominant by the thermally activation process via the nanocrystal, which is different from the thermally annealed nc-Ge sample at an intermediate temperature. The carrier mobility of nc-Ge film can reach as high as about 39.4 cm2.V ^-1 .s^-1, which indicates their potential applications in future nano-devices.展开更多
Ni0.5Zn0.5Fe2-xCrxO4(0≤x≤0.5)ferrites were successfully prepared by conventional solid state reaction method to investigate the effect of chromium substitution on the structural,electrical and magnetic properties.X-...Ni0.5Zn0.5Fe2-xCrxO4(0≤x≤0.5)ferrites were successfully prepared by conventional solid state reaction method to investigate the effect of chromium substitution on the structural,electrical and magnetic properties.X-ray powder diffraction results demonstrate that all the prepared samples are well crystallized single-phase spinel structures without secondary phase.As chromium concentration increases,the lattice parameter and crystallite size gradually decrease.The magnetic measurement indicates that saturation magnetization is substantially suppressed by Cr3+doping,changing from 73.5 A·m2/kg at x=0 to 46.3 A·m2/kg at x=0.5.While the room-temperature electrical resistivity is more than four orders of magnitude enhanced by Cr3+substitution,reaching up to 1.1×108Ω·cm at x=0.5.The dielectric constant monotonously decreases with rising frequency for these ferrites,showing a normal dielectric dispersion behavior.The compositional dependence of dielectric constant is inverse with that of electrical resistivity,which originates from the reduced Fe2+/Fe3+electric dipole number by doping,indicating inherent correlation between polarization and conduction mechanism in ferrite.展开更多
We propose a vectorial optical field generation system based on two-dimensional blazed grating to high-efficiently generate structured optical fields with prescribed amplitude,phase,and polarization.In this system,an ...We propose a vectorial optical field generation system based on two-dimensional blazed grating to high-efficiently generate structured optical fields with prescribed amplitude,phase,and polarization.In this system,an optimized blazed grating hologram is written on a spatial light modulator(SLM)and can diffract the majority of the incident light into the first-order diffractions of the x and y directions,which then serve as base vectors for synthesizing desired vector beams.Compared with the conventional cosine grating used in the previous work,the proposed two-dimensional,blazed grating has a much higher efficiency.Both computer simulation and optical experiment validate that a conversion efficiency up to 5 times that of the former work is achieved.Our method can facilitate applications of the optical field manipulation.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0705000)Leading-edge technology Program of Jiangsu Natural Science Foundation (Grant No.BK20192001)the National Natural Science Foundation of China (Grant No.11974178)。
文摘Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.
基金supported in part by the National Key R&D Program of China (Grant Nos.2023YFF1203600 and 2023YFF0718400)the National Natural Science Foundation of China (Grant Nos.62122036,12322407,62034004,61921005,and 12074176)+2 种基金the Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No.BK20232004)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB44000000)support from the AIQ Foundation and the eScience Center of Collaborative Innovation Center of Advanced Microstructures。
文摘Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors, face challenges in simultaneously achieving initial metallic state and strain-induced insulating state, hindering the development of highly sensitive mechanical sensors. Here we report an ultrasensitive mechanical sensor based on a strain-induced tunable ordered array of metallic and insulating states in the single-crystal bronze-phase vanadium dioxide [VO_(2)(B)] quantum material. It is shown that the initial metallic state in the VO_(2)(B) flake can be tuned to the insulating state by applying a weak uniaxial tensile strain. Such a unique property gives rise to a record-high gauge factor of above 607970, surpassing previous values by an order of magnitude, with excellent linearity and mechanical resilience as well as durability. As a proof-of-concept application, we use our proposed mechanical sensor to demonstrate precise sensing of the micro piece, gentle airflows and water droplets. We attribute the superior performance of the sensor to the strain-induced continuous metal-insulator transition in the single-crystal VO_(2)(B) flake, evidenced by experimental and simulation results. Our findings highlight the potential of exploiting correlated quantum materials for next-generation ultrasensitive flexible mechanical sensors, addressing critical limitations in traditional materials.
基金the support of the National Natural Science Foundation of China (Grant No.62204030)supported in part by the National Natural Science Foundation of China (Grant Nos.62122036,62034004,61921005,61974176,and 12074176)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB44000000)。
文摘InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications.
基金Project supported by the Open Project of the Key Laboratory of Xinjiang Uygur Autonomous Region,China(Grant No.2021D04015)the Yili Kazakh Autonomous Prefecture Science and Technology Program Project,China(Grant No.YZ2022B021).
文摘Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.
基金financial support from various entities,including the Foundation of Anhui Science and Technology University[HCYJ202201]the Anhui Science and Technology University’s Student Innovation and Entrepreneurship Training Program[S202310879115,202310879053]+4 种基金the Key Project of Natural Science Research in Anhui Science and Technology University[2021ZRZD07]the Chuzhou Science and Technology Project[2021GJ002]the Anhui Province Key Research and Development Program[202304a05020085]the Natural Science Research Project of Anhui Educational Committee[2023AH051877]The Opening Project of State Key Laboratory of Advanced Technology for Float Glass[2020KF06,2022KF06]。
文摘Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61627813,62204018,and 61571023)the Beijing Municipal Science and Technology Project(Grant No.Z201100004220002)+2 种基金the National Key Technology Program of China(Grant No.2017ZX01032101)the Program of Introducing Talents of Discipline to Universities in China(Grant No.B16001)the VR Innovation Platform from Qingdao Science and Technology Commission.
文摘Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.
基金supported by the National Natural Science Foundation of China(Grant No.22273034)the Frontiers Science Center for Critical Earth Material Cycling of Nanjing University。
文摘The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.
基金supported by the National Natural Science Foundation of China (Grant Nos.12234009,12275048,12304359,and 12274215)the National Key R&D Program of China (Grant No.2020YFA0309500)+4 种基金the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0301400)the Program for Innovative Talents and Entrepreneurs in Jiangsu,the Natural Science Foundation of Jiangsu Province (Grant No.BK20220759)the Key R&D Program of Guangdong Province,China (Grant No.2020B0303010001)the China Postdoctoral Science Foundation (Grant No.2023M731611)the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No.2023ZB717)。
文摘High-order quantum coherence reveals the statistical correlation of quantum particles. Manipulation of quantum coherence of light in the temporal domain enables the production of the single-photon source, which has become one of the most important quantum resources. High-order quantum coherence in the spatial domain plays a crucial role in a variety of applications, such as quantum imaging, holography, and microscopy. However, the active control of second-order spatial quantum coherence remains a challenging task. Here we predict theoretically and demonstrate experimentally the first active manipulation of second-order spatial quantum coherence,which exhibits the capability of switching between bunching and anti-bunching, by mapping the entanglement of spatially structured photons. We also show that signal processing based on quantum coherence exhibits robust resistance to intensity disturbance. Our findings not only enhance existing applications but also pave the way for broader utilization of higher-order spatial quantum coherence.
基金Project supported by National Key Research and Development Program of China (Grant No. 2019YFA0705000)the National Natural Science Foundation of China (Grant No. 11974178)。
文摘Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with reconstruction algorithm, weak values were proposed to directly measure density matrix elements of quantum state. Recently, similar to the concept of weak value, modular values were introduced to extend the direct measurement scheme to nonlocal quantum wavefunction. However, this method still involves approximations, which leads to inherent low precision. Here, we propose a new scheme which enables direct measurement for ideal value of the nonlocal density matrix element without taking approximations. Our scheme allows more accurate characterization of nonlocal quantum states, and therefore has greater advantages in practical measurement scenarios.
基金Project supported by the Key Research and Development Program of Guangdong Province,China(Grant No.2018B030326001)the National Natural Science Foundation of China(Grant Nos.11474152,12074179,U21A20436,and 61521001)the Natural Science Foundation of Jiangsu Province,China(Grant No.BE2021015-1)。
文摘One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors.Since geometric quantum gate is naturally insensitivity to noise,it appears to be a promising routine to achieve high-fidelity,robust quantum gates.The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels.Moreover,traditional geometric schemes usually take more time than equivalent dynamical ones.Here,we experimentally demonstrate a geometric gate scheme with the time-optimal control(TOC)technique in a superconducting quantum circuit.With a transmon qubit and operations restricted to two computational levels,we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts.The measured fidelities of TOC X gate and X/2 gate are 99.81%and 99.79%respectively.Our work shows a promising routine toward scalable fault-tolerant quantum computation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12074172, 12222406, and 12174182)the State Key Program for Basic Researches of China (Grant No. 2021YFA1400403)+1 种基金the Fundamental Research Funds for the Central Universities, the startup grant at Nanjing Universitythe Excellent Programme at Nanjing University。
文摘One hallmark of Weyl semimetals is the emergence of Fermi arcs(FAs) in surface Brillouin zones, where FAs connect the projected Weyl nodes of opposite chiralities. Unclosed FAs can give rise to various exotic effects that have attracted tremendous research interest. Configurations of FAs are usually thought to be determined fully by the band topology of the bulk states, which seems impossible to manipulate. Here, we show that FAs can be simply modified by a surface gate voltage. Because the penetration length of the surface states depends on the in-plane momentum, a surface gate voltage induces an effective energy dispersion. As a result, a continuous deformation of the surface band can be implemented by tuning the surface gate voltage. In particular, as the saddle point of the surface band meets the Fermi energy, the topological Lifshitz transition takes place for the FAs,during which the Weyl nodes switch their partners connected by the FAs. Accordingly, the magnetic Weyl orbits composed of the FAs on opposite surfaces and chiral Landau bands inside the bulk change their configurations.We show that such an effect can be probed by the transport measurements in a magnetic field, in which the switch-on and switch-off conductances by the surface gate voltage signal the Lifshitz transition. Our work opens a new route for manipulating the FAs by surface gates and exploring novel transport phenomena associated with the topological Lifshitz transition.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1405102)the National Natural Science Foundation of China(Grant Nos.11874059 and 12174405)+4 种基金the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-7021)the Ningbo Key Scientific and Technological Project(Grant No.2021000215)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province(Grant No.2022C01053)the Zhejiang Provincial Natural Science Foundation(Grant No.LR19A040002)Beijing National Laboratory for Condensed Matter Physics(Grant No.2021000123)。
文摘Chiral magnetic states are promising for future spintronic applications. Recent progress of chiral spin textures in two-dimensional magnets, such as chiral domain walls, skyrmions, and bimerons, have been drawing extensive attention. Here, via first-principles calculations, we show that biaxial strain can effectively manipulate the magnetic parameters of the Janus Mn Se Te monolayer. Interestingly, we find that both the magnitude and the sign of the magnetic constants of the Heisenberg exchange coupling, Dzyaloshinskii–Moriya interaction and magnetocrystalline anisotropy can be tuned by strain. Moreover, using micromagnetic simulations, we obtain the distinct phase diagram of chiral spin texture under different strains. Especially, we demonstrate that abundant chiral magnetic structures including ferromagnetic skyrmion, skyrmionium, bimeron, and antiferromagnetic spin spiral can be induced in the Mn Se Te monolayer. We also discuss the effect of temperature on these magnetic structures. The findings highlight the Janus Mn Se Te monolayer as a good candidate for spintronic nanodevices.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0302901 and 2021YFA1400400)the National Natural Science Foundation of China(Grant Nos.11888101,12074175,and 92165205)。
文摘Motivated by the recent measurements of the spatial distribution of single particle excitation states in a hole-doped Mott insulator,we study the effects of impurity on the in-gap states,induced by the doped holes,in the Hubbard model on the square lattice by the cluster perturbation theory.We find that a repulsive impurity potential can move the in-gap state from the lower Hubbard band towards the upper Hubbard band,providing a good account for the experimental observation.The distribution of the spectral function in the momentum space can be used to discriminate the in-gap state induced by doped holes and that by the impurity.The spatial characters of the in-gap states in the presence of two impurities are also discussed and compared to the experiment.
基金supported by the National Natural Science Foundation of China (Grant No. 11874263)the National Key R&D Program of China (Grant No. 2017YFE0131300)Shanghai Technology Innovation Action Plan (2020-Integrated Circuit Technology Support Program 20DZ1100605,2021-Fundamental Research Area 21JC1404700)。
文摘We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.
基金supported by the National Natural Science Foundation of China(Grant No.92165205)the Innovation Program for Quantum Science and Technology of China(Grant No.2021ZD0302803)+1 种基金the National Key Research and Development Program of China(Grant No.2018YFA0306800)the Program of High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu Province,China。
文摘Layered material TaS2hosts multiple structural phases and exotic correlated quantum states,including charge density wave(CDW),superconductivity,quantum spin liquid,and Mott insulating state.Here,we synthesized TaS_(2)monolayers in H and T phases using the molecular beam epitaxial(MBE)method and studied their electronic structures via angle-resolved photoemission spectroscopy(ARPES).We found that the H phase TaS_(2)(H-TaS_(2))monolayer is metallic,with an energy band crossing the Fermi level.In contrast,the T phase TaS_(2)(T-TaS_(2))monolayer shows an insulated energy gap at the Fermi level,while the normal calculated band structure implies it should be metallic without any band gap.However,by considering Hubbard interaction potential U,further density functional theory(DFT)calculation suggests that monolayer T-TaS_(2)could be a CDW Mott insulator,and the DFT+U calculation matches well with the ARPES result.More significantly,the temperature-dependent ARPES result indicates that the CDW Mott state in the T-TaS_(2)monolayer is more robust than its bulk counterpart and can persist at room temperature.Our results reveal that the dimensional effect can enhance the CDW Mott state and provide valuable insights for further exploring the exotic properties of monolayer TaS2.
基金supported by the Natural Science Foundations of Xinjiang Automatic Region, China (Grant Nos. 200821104, 2009211B16, and 2010211B16)the Support Program of Science and Technology of Xinjiang Automatic Region, China (Grant No. 201091112)the West-Light Foundation of the Chinese Academy of Sciences (Grant No. RCPY200906)
文摘There remain a number of unsolved problems about chemical reactions, and it is significant to explore new detection methods because they always offer some unique information about reactions from new points of view. For the first time, the solidification course of a modified two-component acrylic structural adhesive is measured by using reed-vibration mechanical spectroscopy for liquids (RMS-L) in this work, and results show that there are four sequential processes of mechanical spectra with time. The in-depth analyses indicate that RMS-L can detect in real-time the generation and disappearance of active free radicals, as well as the chemical cross-link processes in the adhesive. This kind of real-time detection will undoubtedly facilitate the study of the chemical reaction dynamics controlled by free radicals.
基金supported by the National 973 Project Foundation of the Ministry of Science and Technology of China(No.2013CB834300)Strategic Pilot Science and Technology Project of the CAS(No.XDA10010000)the National Natural Science Foundation of China(No.116201 004)
文摘Linear alkylbenzene(LAB) will be used as solvent for the liquid scintillator in the central detector of Jiangmen Underground Neutrino Observatory. The sheer size of the detector imposes significant challenges and the necessity to further improve the optical transparency of high-quality LAB. In order to study high optical transparencies, we continuously improve our measurement setup and use monochromatic light to measure the attenuation lengths of LAB samples. Moreover, the effects of organic impurities on LAB samples are studied to understand their interaction mechanisms and further improve the optical transparency of LAB.
基金Project supported by the National Basic Research Program of China (Grant No.2013CB632101)the National Natural Science Foundation of China (Grant Nos.11274155 and 61036001)Priority Academic Program Development of Jiangsu Higher Education Institutions,Jiangsu Province,China
文摘Nanocrystalline Ge (nc-Ge) single layers and nc-Ge/SiNx multilayers are prepared by laser annealing amorphous Ge (a-Ge) films and a-Ge/SiNx multilayers. The microstructures as well as the electrical properties of laser-crystallized samples are systematically studied by using various techniques. It is found that the optical band gap of nc-Ge film is reduced compared with its amorphous counterpart. The formed nc-Ge film is of p-type, and the dark conductivity is enhanced by 6 orders for an nc-Ge single layer and 4 orders for a multilayer. It is suggested that the carrier transport mechanism is dominant by the thermally activation process via the nanocrystal, which is different from the thermally annealed nc-Ge sample at an intermediate temperature. The carrier mobility of nc-Ge film can reach as high as about 39.4 cm2.V ^-1 .s^-1, which indicates their potential applications in future nano-devices.
基金Project(11604147)supported by the National Natural Science Foundation of ChinaProject(M32048)supported by the Foundation of National Laboratory of Solid State Microstructures,ChinaProject(20142BBE50014)supported by the Jiangxi Province Key Projects of Science and Technology Support Plan,China。
文摘Ni0.5Zn0.5Fe2-xCrxO4(0≤x≤0.5)ferrites were successfully prepared by conventional solid state reaction method to investigate the effect of chromium substitution on the structural,electrical and magnetic properties.X-ray powder diffraction results demonstrate that all the prepared samples are well crystallized single-phase spinel structures without secondary phase.As chromium concentration increases,the lattice parameter and crystallite size gradually decrease.The magnetic measurement indicates that saturation magnetization is substantially suppressed by Cr3+doping,changing from 73.5 A·m2/kg at x=0 to 46.3 A·m2/kg at x=0.5.While the room-temperature electrical resistivity is more than four orders of magnitude enhanced by Cr3+substitution,reaching up to 1.1×108Ω·cm at x=0.5.The dielectric constant monotonously decreases with rising frequency for these ferrites,showing a normal dielectric dispersion behavior.The compositional dependence of dielectric constant is inverse with that of electrical resistivity,which originates from the reduced Fe2+/Fe3+electric dipole number by doping,indicating inherent correlation between polarization and conduction mechanism in ferrite.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91750202 and 11534006)the National Key R&D Program of China(Grant Nos.2018YFA0306200 and 2017YFA0303700)
文摘We propose a vectorial optical field generation system based on two-dimensional blazed grating to high-efficiently generate structured optical fields with prescribed amplitude,phase,and polarization.In this system,an optimized blazed grating hologram is written on a spatial light modulator(SLM)and can diffract the majority of the incident light into the first-order diffractions of the x and y directions,which then serve as base vectors for synthesizing desired vector beams.Compared with the conventional cosine grating used in the previous work,the proposed two-dimensional,blazed grating has a much higher efficiency.Both computer simulation and optical experiment validate that a conversion efficiency up to 5 times that of the former work is achieved.Our method can facilitate applications of the optical field manipulation.