A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H...A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H2 norm of the transfer function from disturbance to estimation error using the design degrees of freedom provided by a parametric approach in the observer design. Besides the design parameters, the eigenvalues of the closed-loop system are also optimized within desired regions on the left-half of the complex plane. Using the proposed approach, additional specifications can be easily achieved. A spring-mass system is using to show the effect of the proposed approaches.展开更多
The navigation problem of the lifting reentry vehicles has attracted much research interest in the past decade. This paper researches the navigation in the blackout zone during the reentry phase of the aircraft, when ...The navigation problem of the lifting reentry vehicles has attracted much research interest in the past decade. This paper researches the navigation in the blackout zone during the reentry phase of the aircraft, when the communication signals are attenuated and even interrupted by the blackout zone. However, when calculating altitude, a pure classic inertial navigation algorithm appears imprecise and divergent. In order to obtain a more precise aircraft altitude, this paper applies an integrated navigation method based on inertial navigation algorithms, which uses drag derived altitude to aid the inertial navigation during the blackout zone. This method can overcome the shortcomings of the inertial navigation system and improve the navigation accuracy. To further improve the navigation accuracy, the applicable condition and the main error factors, such as the atmospheric coefficient error and drag coefficient error are analyzed in detail. Then the damping circuit design of the navigation control system and the damping coefficients determination is introduced. The feasibility of the method is verified by the typical reentry trajectory simulation, and the influence of the iterative times on the accuracy is analyzed. Simulation results show that iterative three times achieves the best effect.展开更多
基金This project was supported by the Chinese National Natural Science Foundation under Grant (10372015).
文摘A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H2 norm of the transfer function from disturbance to estimation error using the design degrees of freedom provided by a parametric approach in the observer design. Besides the design parameters, the eigenvalues of the closed-loop system are also optimized within desired regions on the left-half of the complex plane. Using the proposed approach, additional specifications can be easily achieved. A spring-mass system is using to show the effect of the proposed approaches.
基金supported by the National Natural Science Foundation of China (No.61573059)
文摘The navigation problem of the lifting reentry vehicles has attracted much research interest in the past decade. This paper researches the navigation in the blackout zone during the reentry phase of the aircraft, when the communication signals are attenuated and even interrupted by the blackout zone. However, when calculating altitude, a pure classic inertial navigation algorithm appears imprecise and divergent. In order to obtain a more precise aircraft altitude, this paper applies an integrated navigation method based on inertial navigation algorithms, which uses drag derived altitude to aid the inertial navigation during the blackout zone. This method can overcome the shortcomings of the inertial navigation system and improve the navigation accuracy. To further improve the navigation accuracy, the applicable condition and the main error factors, such as the atmospheric coefficient error and drag coefficient error are analyzed in detail. Then the damping circuit design of the navigation control system and the damping coefficients determination is introduced. The feasibility of the method is verified by the typical reentry trajectory simulation, and the influence of the iterative times on the accuracy is analyzed. Simulation results show that iterative three times achieves the best effect.