High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piexoelectric,preolecric,and freeltric efcts but also photoclecric conversion eficiency i...High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piexoelectric,preolecric,and freeltric efcts but also photoclecric conversion eficiency in OPVs,carrier mobility in OFETS,and charge density in charge-trapping memories.Herein,we report an ultralong persistence length(≈41 nm)efet of spiro-fused organic nanopolymers on dielectric properties,together with excitonic and charge carrier behaviors.The state-of-the-art nanopolymers,namely,nanopolyspirogrids(NPSGs),are synthesized via the simple crossscale Friedel-Crafts polygridlization of AjB-type nanomonomers.The high dielectric constant(k=8.43)of NPSG is firstly achieved by locking spiro-polygridization efect that results in the enhancement of dipole polarization.When doping into a polystyrene-based dielectric layer,such a high-k feature of NPSG increases the feld-ffct carrier mobility from 0.20 to 0.90cm^(2)Vl s'in pentacene OFET devices.Meanwhile,amorphous NPSG film exhibits an ultralow energy disorder(<50 meV)for an exellent zero-field hole mobility of 3.94×10^(-1)cm^(2)V^(-1)s^(-1).surpassing most of the amorphousπconjugated polymers Onganic nanopolymers with high dielectric constants open a new way to break through the bottleneck of eficiency and multifunctionality in the blueprint of the fourth generation semiconductors.展开更多
基金supported by the National Natural Science Foundation of China(21774061,22071112,and 61935017)National Key Laboratory(2009DS690095)+2 种基金Natural Science Foundation Major Research Program Integration Project(Grant Number 91833306)Natural Science Fund for Colleges and Universities in Jiangsu Province(20KJB150038)and Open Project from State Key Laboratory of Supramolecular Structure and Materials at jilin University(No.sklssm202014 and sklssm202108).
文摘High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piexoelectric,preolecric,and freeltric efcts but also photoclecric conversion eficiency in OPVs,carrier mobility in OFETS,and charge density in charge-trapping memories.Herein,we report an ultralong persistence length(≈41 nm)efet of spiro-fused organic nanopolymers on dielectric properties,together with excitonic and charge carrier behaviors.The state-of-the-art nanopolymers,namely,nanopolyspirogrids(NPSGs),are synthesized via the simple crossscale Friedel-Crafts polygridlization of AjB-type nanomonomers.The high dielectric constant(k=8.43)of NPSG is firstly achieved by locking spiro-polygridization efect that results in the enhancement of dipole polarization.When doping into a polystyrene-based dielectric layer,such a high-k feature of NPSG increases the feld-ffct carrier mobility from 0.20 to 0.90cm^(2)Vl s'in pentacene OFET devices.Meanwhile,amorphous NPSG film exhibits an ultralow energy disorder(<50 meV)for an exellent zero-field hole mobility of 3.94×10^(-1)cm^(2)V^(-1)s^(-1).surpassing most of the amorphousπconjugated polymers Onganic nanopolymers with high dielectric constants open a new way to break through the bottleneck of eficiency and multifunctionality in the blueprint of the fourth generation semiconductors.