期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Lagrangian-based investigation of multiphase flows by finite-timeLyapunov exponents 被引量:12
1
作者 Jia-Ning Tang Chien-Chou Tseng Ning-FeiWang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期612-624,共13页
Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (... Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) is utilized in this study to elucidate the multiphase interactions in gaseous jets injected into water and time-dependent turbu- lent cavitation under the framework of Navier-Stokes flow computations. For the gaseous jets injected into water, the highlighted phenomena of the jet transportation can be observed by the LCS method, including expansion, bulge, necking/breaking, and back-attack. Besides, the observation of the LCS reveals that the back-attack phenomenon arises from the fact that the injected gas has difficulties to move toward downstream re- gion after the necking/breaking. For the turbulent cavitating flow, the ridge of the FTLE field can form a LCS to capture the front and boundary of the re-entraint jet when the ad- verse pressure gradient is strong enough. It represents a bar- rier between particles trapped inside the circulation region and those moving downstream. The results indicate that the FFLE field has the potential to identify the structures of mul- tiphase flows, and the LCS can capture the interface/barrier or the vortex/circulation region. 展开更多
关键词 Finite-time Lyapunov exponents Lagrangiancoherent structures Multiphase flow Gaseous jets injectedinto water CAVITATION
下载PDF
Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems 被引量:4
2
作者 Wei Shyy Young-Chang Cho +3 位作者 Wenbo Du Amit Gupta Chien-Chou Tseng Ann Marie Sastry 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期845-865,共21页
Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which... Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging." 展开更多
关键词 Multi-scale mechanics ~ Cryogenic cavitating flow Surrogate-based modeling Active flow control Engineering system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部