In this paper, we demonstrate the residual phase noise of a few microwave frequency dividers which usually limit the performance of frequency synthesizers. In order to compare these dividers under different operation ...In this paper, we demonstrate the residual phase noise of a few microwave frequency dividers which usually limit the performance of frequency synthesizers. In order to compare these dividers under different operation frequencies, we calculate additional time jitters of these dividers by using the measured phase noise. The time jitters are various from -0.1 fs to 43 fs in a bandwidth from 1 Hz to 100 Hz in dependent of models and operation frequencies. The HMC series frequency dividers exhibit outstanding performance for high operation frequencies, and the time jitters can be sub-fs. The time jitters of SP8401, MC10EP139, and MC100LVEL34 are comparable or even below that of HMC series for low operation frequencies.展开更多
We investigate the single-pulse emission variations of two pulsars,PSRs J0211+4235 and J0553+4111,observed with the Five-hundred-meter Aperture Spherical radio Telescope at the 1.25 GHz central frequency.The observati...We investigate the single-pulse emission variations of two pulsars,PSRs J0211+4235 and J0553+4111,observed with the Five-hundred-meter Aperture Spherical radio Telescope at the 1.25 GHz central frequency.The observation sessions span from 2020 December to 2021 July,with 21 and 22 observations for them respectively.The integrated pulse profile of PSR J0211+4235 shows that there is a weak pulse component following the main component,and PSR J0553+4111 displays a bimodal profile with a bridge component in the middle.PSR J0211+4235 presents significant nulling phenomenon with nulling duration lasting from 2 to 115 pulses and burst duration lasting from 2 to 113 pulses.The NF of each observation is determined to be 45%-55%.No emission greater than threeσis found in the mean integrated profile of all nulling pulses.In most cases,the pulse energy changes abruptly during the transition from null to burst,while in the transition from burst to null there are two trends:abrupt and gradual.We find that the nulling phenomenon of PSR J0211+4235 is periodic by the Fourier transform of the null and burst state.In addition,the single-pulse modulation characteristics of these two pulsars are investigated,and the distributions of modulation index,LRFS and 2DFS are analyzed with PSRSALSA.The left peak of PSR J0553+4111 has intensity modulation.Finally,the polarization properties of these two pulsars are obtained through polarization calibration,and their characteristics are analyzed.The possible physical mechanisms of these phenomena are discussed.展开更多
A geostationary(GEO) satellite may serve as a navigation satellite,but there is a problem that maneuvers frequently occur and the forces are difficult to model.Based on the technique of determining satellite orbits by...A geostationary(GEO) satellite may serve as a navigation satellite,but there is a problem that maneuvers frequently occur and the forces are difficult to model.Based on the technique of determining satellite orbits by transfer,a predicted orbit with high accuracy may be achieved by the method of statis-tical orbit determination in case of no maneuver force.The predicted orbit will soon be invalid after the maneuver starts,and it takes a long time to get a valid orbit after the maneuver ends.In order to improve ephemeris usability,the method of rapid orbit forecasting after maneuvers is studied.First,GEO satellite movement is analyzed in case of maneuvers based on the observation from the orbit meas-urement system by transfer.Then when a GEO satellite is in the free status just after maneuvers,the short arc observation is used to forecast the orbit.It is assumed that the common system bias and biases of each station are constant,which can be obtained from orbit determination with long arc observations.In this way,only 6 orbit elements would be solved by the method of statistical orbit determination,and the ephemeris with high accuracy may be soon obtained.Actual orbit forecasting with short arc observation for SINOSAT-1 satellite shows that,with the tracking network available,the precision of the predicted orbit(RMS of O-C) can reach about 5 m with 15 min arc observation,and about 3 m with 30 min arc observation.展开更多
Based on gravity frequency shift effect predicted by general relativity theory, this study discusses an approach for determining the gravity potential(geopotential) difference between arbitrary two points P and Q by r...Based on gravity frequency shift effect predicted by general relativity theory, this study discusses an approach for determining the gravity potential(geopotential) difference between arbitrary two points P and Q by remote comparison of two precise optical clocks via optical fiber frequency transfer. After synchronization, by measuring the signal's frequency shift based upon the comparison of bidirectional frequency signals from P and Q oscillators connected with two optical atomic clocks via remote optical fiber frequency transfer technique, the geopotential difference between the two points could be determined, and its accuracy depends on the stabilities of the optical clocks and the frequency transfer comparison technique. Due to the fact that the present stability of optical clocks achieves 1.6×10-18 and the present frequency transfer comparison via optical fiber provides stabilities as high as 10-19 level, this approach is prospective to determine geopotential difference with an equivalent accuracy of 1.5 cm. In addition, since points P and Q are quite arbitrary, this approach may provide an alternative way to determine the geopotential over a continent, and prospective potential to unify a regional height datum system.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.91336101 and No.61127901the West Light Foundation of the Chinese Academy of Sciences under Grant No.2013ZD02
文摘In this paper, we demonstrate the residual phase noise of a few microwave frequency dividers which usually limit the performance of frequency synthesizers. In order to compare these dividers under different operation frequencies, we calculate additional time jitters of these dividers by using the measured phase noise. The time jitters are various from -0.1 fs to 43 fs in a bandwidth from 1 Hz to 100 Hz in dependent of models and operation frequencies. The HMC series frequency dividers exhibit outstanding performance for high operation frequencies, and the time jitters can be sub-fs. The time jitters of SP8401, MC10EP139, and MC100LVEL34 are comparable or even below that of HMC series for low operation frequencies.
基金supported by National Key Research and Development Program of China(2022YFC2205203)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(No.2022A03013-1)+3 种基金the National Natural Science Foundation of China(NSFC,Grant Nos.U1838109,12041304)supported by the 2021 project Xinjiang Uygur autonomous region of China for Tianshan elitesthe Youth Innovation Promotion Association of CAS under No.2023069support from the Natural Science Foundation of Shanghai(Grant No.20ZR1467600)。
文摘We investigate the single-pulse emission variations of two pulsars,PSRs J0211+4235 and J0553+4111,observed with the Five-hundred-meter Aperture Spherical radio Telescope at the 1.25 GHz central frequency.The observation sessions span from 2020 December to 2021 July,with 21 and 22 observations for them respectively.The integrated pulse profile of PSR J0211+4235 shows that there is a weak pulse component following the main component,and PSR J0553+4111 displays a bimodal profile with a bridge component in the middle.PSR J0211+4235 presents significant nulling phenomenon with nulling duration lasting from 2 to 115 pulses and burst duration lasting from 2 to 113 pulses.The NF of each observation is determined to be 45%-55%.No emission greater than threeσis found in the mean integrated profile of all nulling pulses.In most cases,the pulse energy changes abruptly during the transition from null to burst,while in the transition from burst to null there are two trends:abrupt and gradual.We find that the nulling phenomenon of PSR J0211+4235 is periodic by the Fourier transform of the null and burst state.In addition,the single-pulse modulation characteristics of these two pulsars are investigated,and the distributions of modulation index,LRFS and 2DFS are analyzed with PSRSALSA.The left peak of PSR J0553+4111 has intensity modulation.Finally,the polarization properties of these two pulsars are obtained through polarization calibration,and their characteristics are analyzed.The possible physical mechanisms of these phenomena are discussed.
基金Supported by the National High Technology Research and Development Program of China (Grant No. 2006AA12Z322) the National Basic Research Program of China (Grant No. 2007CB815503)the West Light Program of Chinese Academy of Sciences (Grant No. 2007LH01)
文摘A geostationary(GEO) satellite may serve as a navigation satellite,but there is a problem that maneuvers frequently occur and the forces are difficult to model.Based on the technique of determining satellite orbits by transfer,a predicted orbit with high accuracy may be achieved by the method of statis-tical orbit determination in case of no maneuver force.The predicted orbit will soon be invalid after the maneuver starts,and it takes a long time to get a valid orbit after the maneuver ends.In order to improve ephemeris usability,the method of rapid orbit forecasting after maneuvers is studied.First,GEO satellite movement is analyzed in case of maneuvers based on the observation from the orbit meas-urement system by transfer.Then when a GEO satellite is in the free status just after maneuvers,the short arc observation is used to forecast the orbit.It is assumed that the common system bias and biases of each station are constant,which can be obtained from orbit determination with long arc observations.In this way,only 6 orbit elements would be solved by the method of statistical orbit determination,and the ephemeris with high accuracy may be soon obtained.Actual orbit forecasting with short arc observation for SINOSAT-1 satellite shows that,with the tracking network available,the precision of the predicted orbit(RMS of O-C) can reach about 5 m with 15 min arc observation,and about 3 m with 30 min arc observation.
基金supported by the National Natural Science Foundation of China (Nos. 41631072, 41721003, 41574007, and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics (No. B17033)+1 种基金the DAAD Thematic Network Project (No. 57173947)the International Space Science Institute (ISSI) 2017–2019
文摘Based on gravity frequency shift effect predicted by general relativity theory, this study discusses an approach for determining the gravity potential(geopotential) difference between arbitrary two points P and Q by remote comparison of two precise optical clocks via optical fiber frequency transfer. After synchronization, by measuring the signal's frequency shift based upon the comparison of bidirectional frequency signals from P and Q oscillators connected with two optical atomic clocks via remote optical fiber frequency transfer technique, the geopotential difference between the two points could be determined, and its accuracy depends on the stabilities of the optical clocks and the frequency transfer comparison technique. Due to the fact that the present stability of optical clocks achieves 1.6×10-18 and the present frequency transfer comparison via optical fiber provides stabilities as high as 10-19 level, this approach is prospective to determine geopotential difference with an equivalent accuracy of 1.5 cm. In addition, since points P and Q are quite arbitrary, this approach may provide an alternative way to determine the geopotential over a continent, and prospective potential to unify a regional height datum system.