This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recyclin...This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process.展开更多
This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a u...This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink.展开更多
A new synchronization method, called the input/output-to-state stable synchronization (IOSSS) method, is proposed for a general class of chaotic systems with external disturbance. By introducing Lyapunov stability the...A new synchronization method, called the input/output-to-state stable synchronization (IOSSS) method, is proposed for a general class of chaotic systems with external disturbance. By introducing Lyapunov stability theory and linear matrix inequality (LMI) for the first time, the IOSSS controller is shown to not only guarantee the synchronization of the chaotic systems, but also reduce the effect of external disturbance. The proposed IOSSS controller can be obtained by solving the LMI, which can easily be done using standard numerical packages. A numerical example is given to demonstrate the availability of the proposed method.展开更多
The increased prevalence of the Internet of Things(IoT)and the integration of digital technology into our daily lives have given rise to heightened security risks and the need for more robust security measures.In resp...The increased prevalence of the Internet of Things(IoT)and the integration of digital technology into our daily lives have given rise to heightened security risks and the need for more robust security measures.In response to these challenges,physical unclonable functions(PUFs)have emerged as promising solution,offering a highly secure method to generate unpredictable and unique random digital values by leveraging inherent physical characteristics.However,traditional PUFs implementations often require complex hardware and circuitry,which can add to the cost and complexity of the system.We present a novel approach using a random wrinkles PUF(rw-PUF)based on an optically anisotropic,facile,simple,and cost-effective material.These wrinkles contain randomly oriented liquid crystal molecules,resulting in a two-dimensional retardation map corresponding to a complex birefringence pattern.Additionally,our proposed technique allows for customization based on specific requirements using a spatial light modulator,enabling fast fabrication.The random wrinkles PUF has the capability to store multiple data sets within a single PUF without the need for physical alterations.Furthermore,we introduce a concept called‘polyhedron authentication,’which utilizes three-dimensional information storage in a voxelated random wrinkles PUF.This approach demonstrates the feasibility of implementing high-level security technology by leveraging the unique properties of the rw-PUF.展开更多
In this study,we investigated the effect of sample pretreatments(ultrasonication and alkaline extraction)on total organic carbon(TOC)measurements for water samples containing suspended solids(SS)of four different orig...In this study,we investigated the effect of sample pretreatments(ultrasonication and alkaline extraction)on total organic carbon(TOC)measurements for water samples containing suspended solids(SS)of four different origins(algae,soil,sewage sludge,and leaf litter)to more clearly assess the impact of particulate organic carbon(POC)in water.The effects each of ultrasonication(power,pulse,etc.)and alkaline extraction condition(concentration,time,etc.)on the TOC recovery and precision were investigated,and the results were compared with those of a new sample pre treatment method combining both methods.Alkaline treatment(0.01 mol/L NaOH)showed higher precision than ultrasonication(100/5 on/off pulse),and notably,the differences among the measured TOC values in samples of different origins were also further reduced in the alkaline treatment.This suggests that the ultrasonic pretreatment results can be mainly attributed to the increase in POC recovery through particle size reduction,whereas the alkaline treatment results are achieved through the enhancement of POC solubilization.It is also particularly noteworthy that a higher TOC recovery of 87.6%±7.4%with a higher precision of 8.4%could be obtained using the combined method,compared to each treatment(ultrasonic:TOC recovery 34.7%,relative standard deviation 63.1%;alkaline:49.6%and 23.0%,respectively).Thus,simultaneous pretreatment with ultrasonication and alkaline extraction is expected to increase the oxidation rate of organic matter and the homogeneity of the samples,minimizing the loss of POC measurement values,and thereby improving the reliability of the TOC measurements of water samples containing SS.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and ICT(RS-2023-00254424)Ministry of Education(2020R1A6A1A03038540))。
文摘This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process.
文摘This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink.
文摘A new synchronization method, called the input/output-to-state stable synchronization (IOSSS) method, is proposed for a general class of chaotic systems with external disturbance. By introducing Lyapunov stability theory and linear matrix inequality (LMI) for the first time, the IOSSS controller is shown to not only guarantee the synchronization of the chaotic systems, but also reduce the effect of external disturbance. The proposed IOSSS controller can be obtained by solving the LMI, which can easily be done using standard numerical packages. A numerical example is given to demonstrate the availability of the proposed method.
基金This work was supported by National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1032762)This work partially supported Culture,Sports and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture,Sports and Tourism in 2023(Project Name:Development of copyright protection service for content distributed in smart glasses,Project Number:RS-2023-00217481,Contribution Rate:10%).
文摘The increased prevalence of the Internet of Things(IoT)and the integration of digital technology into our daily lives have given rise to heightened security risks and the need for more robust security measures.In response to these challenges,physical unclonable functions(PUFs)have emerged as promising solution,offering a highly secure method to generate unpredictable and unique random digital values by leveraging inherent physical characteristics.However,traditional PUFs implementations often require complex hardware and circuitry,which can add to the cost and complexity of the system.We present a novel approach using a random wrinkles PUF(rw-PUF)based on an optically anisotropic,facile,simple,and cost-effective material.These wrinkles contain randomly oriented liquid crystal molecules,resulting in a two-dimensional retardation map corresponding to a complex birefringence pattern.Additionally,our proposed technique allows for customization based on specific requirements using a spatial light modulator,enabling fast fabrication.The random wrinkles PUF has the capability to store multiple data sets within a single PUF without the need for physical alterations.Furthermore,we introduce a concept called‘polyhedron authentication,’which utilizes three-dimensional information storage in a voxelated random wrinkles PUF.This approach demonstrates the feasibility of implementing high-level security technology by leveraging the unique properties of the rw-PUF.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(No.2017R1A2A2A09069617)the Korea Ministry of Environment as a“Global Top Project”(No.2016002210005)
文摘In this study,we investigated the effect of sample pretreatments(ultrasonication and alkaline extraction)on total organic carbon(TOC)measurements for water samples containing suspended solids(SS)of four different origins(algae,soil,sewage sludge,and leaf litter)to more clearly assess the impact of particulate organic carbon(POC)in water.The effects each of ultrasonication(power,pulse,etc.)and alkaline extraction condition(concentration,time,etc.)on the TOC recovery and precision were investigated,and the results were compared with those of a new sample pre treatment method combining both methods.Alkaline treatment(0.01 mol/L NaOH)showed higher precision than ultrasonication(100/5 on/off pulse),and notably,the differences among the measured TOC values in samples of different origins were also further reduced in the alkaline treatment.This suggests that the ultrasonic pretreatment results can be mainly attributed to the increase in POC recovery through particle size reduction,whereas the alkaline treatment results are achieved through the enhancement of POC solubilization.It is also particularly noteworthy that a higher TOC recovery of 87.6%±7.4%with a higher precision of 8.4%could be obtained using the combined method,compared to each treatment(ultrasonic:TOC recovery 34.7%,relative standard deviation 63.1%;alkaline:49.6%and 23.0%,respectively).Thus,simultaneous pretreatment with ultrasonication and alkaline extraction is expected to increase the oxidation rate of organic matter and the homogeneity of the samples,minimizing the loss of POC measurement values,and thereby improving the reliability of the TOC measurements of water samples containing SS.