Given the high and increasing lightning incidence over the Southeast of Brazil and the various impacts that this phenomenon generates to society, there is a growing need in predicting its occurrence, in order to minim...Given the high and increasing lightning incidence over the Southeast of Brazil and the various impacts that this phenomenon generates to society, there is a growing need in predicting its occurrence, in order to minimize its consequences. In this context, this work presents the development of a methodology for the projection of lightning in the State of S?o Paulo (Southeastern Brazil), using the HadGEM2-ES and CSIRO-Mk3.6 models in two IPCC climate change scenarios: RCP4.5 and RCP8.5. Since lightning is not an output variable of climate models, tests were carried out to evaluate the relationship between the observed data of oceanic and atmospheric fields, which are known as outputs of the models, and the lightning from the RINDAT and BrasilDAT detection networks. As result, a correlation of 0.84 was obtained. In the projections, it was verified that, while during a large portion of the current climate we observed events of lightning below the average, the future climate reveals the preponderance of anomalously above average events, both in the scenario of intermediate-low emissions (RCP4.5) and in the scenario of high emissions (RCP8.5), suggesting a change in the pattern of the lightning incidence in the State of S?o Paulo.展开更多
文摘Given the high and increasing lightning incidence over the Southeast of Brazil and the various impacts that this phenomenon generates to society, there is a growing need in predicting its occurrence, in order to minimize its consequences. In this context, this work presents the development of a methodology for the projection of lightning in the State of S?o Paulo (Southeastern Brazil), using the HadGEM2-ES and CSIRO-Mk3.6 models in two IPCC climate change scenarios: RCP4.5 and RCP8.5. Since lightning is not an output variable of climate models, tests were carried out to evaluate the relationship between the observed data of oceanic and atmospheric fields, which are known as outputs of the models, and the lightning from the RINDAT and BrasilDAT detection networks. As result, a correlation of 0.84 was obtained. In the projections, it was verified that, while during a large portion of the current climate we observed events of lightning below the average, the future climate reveals the preponderance of anomalously above average events, both in the scenario of intermediate-low emissions (RCP4.5) and in the scenario of high emissions (RCP8.5), suggesting a change in the pattern of the lightning incidence in the State of S?o Paulo.