Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer from water absorption due to their heterogeneous structure. The main process governing water absorption is diffusion of water molecules throu...Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer from water absorption due to their heterogeneous structure. The main process governing water absorption is diffusion of water molecules through the epoxy matrix. However, hydrolytic degradation may also take place during components service life specially due high temperatures. In order to mitigate the effects of the water diffusive processes in the deterioration of in-service behavior of epoxy matrix composites, the use of chemically modified nanoclays as an additive has been proposed and studied in previous works [1]. In this work, an Artificial Neural Network (ANN) model was developed for better understanding and predicting the influence of modified and unmodified bentonite addition on the water absorption behavior of epoxy-anhydride systems. An excellent correlation between model and experimental data was found. The ANN model allowed the identification of critical points like the precise temperature at which a particular system’s water uptake goes beyond a predefined threshold, or which system will resist an immersion longer than a particular time.展开更多
Mollisols are common in South America. They cover about 8.87 × 107ha, 1.3 × 107ha and 4.3 × 106ha in Argentina, Uruguay and Southern Brazil respectively, which is 11.5% of the world total. Most of South...Mollisols are common in South America. They cover about 8.87 × 107ha, 1.3 × 107ha and 4.3 × 106ha in Argentina, Uruguay and Southern Brazil respectively, which is 11.5% of the world total. Most of South American Mollisols were developed on Pleistocene and Holocene sediments and lie within the limits of the temperate zone, though the extreme north is bordering subtropical and the extreme south is within a cold-temperate zone. All suborders of Mollisols occur in Argentina, the most extensive being Udolls followed by Ustolls, whereas only Udolls, Aquolls and Albolls occur in Uruguay. Vertisols in Uruguay have many properties similar to Mollisols, and the occurrence of Vertisols is strongly associated with Mollisols. The Pampean Mollisols are a significant component of the global breadbasket of modem times. The main Argentine crops are wheat, corn, sorghum, barmy, soybeans and sunflower, while Mollisols in Uruguay remain mostly dedicated to cattle and sheep grazing though crop production has been increasing very rapidly in the last decade. Throughout South America, research has shown that Mollisols are experiencing losses of soil organic matter and nutrients, and degradation of physical properties after long cropping periods, resulting in soil scientists calling for increased conservation practices to reduce future losses and a deterioration of soil quality, and thus a more sustainable agriculture in the region.展开更多
We report on the biodegradation of pure hydrocarbons and chemotaxis towards these compounds by an isolated chlorophenol degrader,Pseudomonas strain H.The biochemical and phylogenetic analysis of the 16S rDNA sequence ...We report on the biodegradation of pure hydrocarbons and chemotaxis towards these compounds by an isolated chlorophenol degrader,Pseudomonas strain H.The biochemical and phylogenetic analysis of the 16S rDNA sequence identified Pseudomonas strain H as having 99.56% similarity with P.aeruginosa PA01.This strain was able to degrade n-hexadecane,1-undecene,1-nonene,1-decene,1-dodecene and kerosene.It grew in the presence of 1-octene,while this hydrocarbons is toxic to other hydrocarbons degraders.Pseudomonas strain H was also chemotactic towards n-hexadecane,kerosene,1-undecene and 1-dodecene.These results show that this Pseudomonas strain H is an attractive candidate for hydrocarbon-containing wastewater bioremediation in controlled environments.Since the classical standard techniques for detecting chemotaxis are not efficient at low bacterial concentrations,we demonstrate the use of the dynamic speckle laser method,which is simple and inexpensive,to confirm bacterial chemotaxis at low cell concentrations (less than 105 colony-forming unit per millilitre (CFU/mL)) when hydrocarbons are the attractants.展开更多
文摘Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer from water absorption due to their heterogeneous structure. The main process governing water absorption is diffusion of water molecules through the epoxy matrix. However, hydrolytic degradation may also take place during components service life specially due high temperatures. In order to mitigate the effects of the water diffusive processes in the deterioration of in-service behavior of epoxy matrix composites, the use of chemically modified nanoclays as an additive has been proposed and studied in previous works [1]. In this work, an Artificial Neural Network (ANN) model was developed for better understanding and predicting the influence of modified and unmodified bentonite addition on the water absorption behavior of epoxy-anhydride systems. An excellent correlation between model and experimental data was found. The ANN model allowed the identification of critical points like the precise temperature at which a particular system’s water uptake goes beyond a predefined threshold, or which system will resist an immersion longer than a particular time.
基金Under the auspices of Bureau of International Cooperation Grant,Chinese Academy of Sciences(No.GJHZ0949)Harbin Bureau of Science and Technology for Outstanding Scientist(No.2010RFXYN044)+3 种基金National University of Mar del Plata(No.AGR-336/10)National Institute of Agricultural Technology(No.AERN-022411)National Agency for the Promotion of Science and Technology(No.PAE-PICT2007n°18)Department of Renewable Natural Resourses,Ministry of Livestock,Agriculture and Fisheries of Uruguay(No.TCP/URU/3301)
文摘Mollisols are common in South America. They cover about 8.87 × 107ha, 1.3 × 107ha and 4.3 × 106ha in Argentina, Uruguay and Southern Brazil respectively, which is 11.5% of the world total. Most of South American Mollisols were developed on Pleistocene and Holocene sediments and lie within the limits of the temperate zone, though the extreme north is bordering subtropical and the extreme south is within a cold-temperate zone. All suborders of Mollisols occur in Argentina, the most extensive being Udolls followed by Ustolls, whereas only Udolls, Aquolls and Albolls occur in Uruguay. Vertisols in Uruguay have many properties similar to Mollisols, and the occurrence of Vertisols is strongly associated with Mollisols. The Pampean Mollisols are a significant component of the global breadbasket of modem times. The main Argentine crops are wheat, corn, sorghum, barmy, soybeans and sunflower, while Mollisols in Uruguay remain mostly dedicated to cattle and sheep grazing though crop production has been increasing very rapidly in the last decade. Throughout South America, research has shown that Mollisols are experiencing losses of soil organic matter and nutrients, and degradation of physical properties after long cropping periods, resulting in soil scientists calling for increased conservation practices to reduce future losses and a deterioration of soil quality, and thus a more sustainable agriculture in the region.
文摘We report on the biodegradation of pure hydrocarbons and chemotaxis towards these compounds by an isolated chlorophenol degrader,Pseudomonas strain H.The biochemical and phylogenetic analysis of the 16S rDNA sequence identified Pseudomonas strain H as having 99.56% similarity with P.aeruginosa PA01.This strain was able to degrade n-hexadecane,1-undecene,1-nonene,1-decene,1-dodecene and kerosene.It grew in the presence of 1-octene,while this hydrocarbons is toxic to other hydrocarbons degraders.Pseudomonas strain H was also chemotactic towards n-hexadecane,kerosene,1-undecene and 1-dodecene.These results show that this Pseudomonas strain H is an attractive candidate for hydrocarbon-containing wastewater bioremediation in controlled environments.Since the classical standard techniques for detecting chemotaxis are not efficient at low bacterial concentrations,we demonstrate the use of the dynamic speckle laser method,which is simple and inexpensive,to confirm bacterial chemotaxis at low cell concentrations (less than 105 colony-forming unit per millilitre (CFU/mL)) when hydrocarbons are the attractants.