Traditional methods of coal thermal resistance characterization are informative but considerably timeconsuming and require utilization of a complex and expensive equipment. This limits the effectiveness of their appli...Traditional methods of coal thermal resistance characterization are informative but considerably timeconsuming and require utilization of a complex and expensive equipment. This limits the effectiveness of their application. In this paper, authors experimentally investigated potential application of thermally stimulated acoustic emission method for developing of relatively simple and rapid coals thermal resistance assessment method. Features of thermally stimulated acoustic emission of anthracite, lignites and bituminous coal samples subject to cyclic thermal loading have been experimentally investigated.For the first time, it has been shown that there exists a relationship of such patterns with structural parameters and properties of the coal samples, as well as their thermal resistance. The results indicate the possibility of applying the method of thermally stimulated acoustic emission to control processes of cryogenic disintegration and thermal resistance of fossil coals. The description of the equipment and methodological support needed for the implementation of this method have been provided.展开更多
The Mg–Zn–Y–Zr alloys with long-period stacking-ordered(LPSO)and W eutectic phases were investigated to develop new magnesium casting alloys.The temperatures for T6 heat treatment were selected based on the hardnes...The Mg–Zn–Y–Zr alloys with long-period stacking-ordered(LPSO)and W eutectic phases were investigated to develop new magnesium casting alloys.The temperatures for T6 heat treatment were selected based on the hardness and electrical conductivity measurements.The hot tearing susceptibility of the alloys with LPSO phase is lower than that of the alloys with W phase,which is associated with the freezing range of the alloys.However,the investigated alloys displayed the same fluidity.Under T6 conditions,increasing the Y content in the alloys resulted in increased yield strength,whereas other tensile properties were similar for the alloys.The corrosion resistance was higher for the alloys with LPSO phase compared to that of the alloys with W phase.Mg−2.5Zn−3.7Y−0.3Zr(mass fraction,%)alloy with LPSO phase possessed high castability and mechanical properties,with a corrosion rate of 2 mm/year.展开更多
This work studied the effects of adding Zr and Mn in amounts less than 1wt%on the microstructure,mechanical properties,casting properties,and corrosion resistance of Mg-Zn-Cu alloys containing 2.5wt%Cu and 2.5wt%-6.5w...This work studied the effects of adding Zr and Mn in amounts less than 1wt%on the microstructure,mechanical properties,casting properties,and corrosion resistance of Mg-Zn-Cu alloys containing 2.5wt%Cu and 2.5wt%-6.5wt%Zn.The hardness and electrical conductivity measurements were used to find an optimal heat treatment schedule with the best mechanical properties.It has been established that Zr significantly increases the yield strength of the alloys due to a strong grain refinement effect.However,the presence of Mn and Zr has a detrimental effect on alloy’s elongation at fracture.It was shown that the precipitation of the Mg_(2)Cu cathodic phase in the alloy structure negatively affects the corrosion behavior.Nevertheless,the addition of Mn decreases the corrosion rate of the investigated alloys.The best combination of the mechanical,casting,and corrosion properties were achieved in the alloys containing 2.5wt%Cu and 5wt%Zn.However,the Mn or Zr addition can improve the properties of the alloys;for example,the addition of Mn or Zr increases the fluidity of the alloys.展开更多
In iron-based superconductors,the(0,π) or(π,0) nematicity,which describes an electronic anisotropy with a fourfold symmetry breaking,is well established and believed to be important for understanding the superconduc...In iron-based superconductors,the(0,π) or(π,0) nematicity,which describes an electronic anisotropy with a fourfold symmetry breaking,is well established and believed to be important for understanding the superconducting mechanism.However,how exactly such a nematic order observed in the normal state can be related to the superconducting pairing is still elusive.Here,by performing angular-dependent in-plane magnetoresistivity using ultra-thin flakes in the steep superconducting transition region,we unveil a nematic superconducting order along the(π,π) direction in electron-doped BaFe_(2-x)Ni_(x)As_(2) from under-doped to heavily overdoped regimes with x=0.065- 0.18.It shows superconducting gap maxima along the(π,π) direction rotated by 45° from the nematicity along(0, π) or(π,0) direction observed in the normal state.A similar(π,π)-type nematicity is also observed in the under-doped and optimally doped hole-type Ba1-yKyFe2 As_(2),with y=0.2-0.5.These results suggest that the(π,π) nematic superconducting order is a universal feature that needs to be taken into account in the superconducting pairing mechanism in iron-based superconductors.展开更多
This work is a study of the effect of co-doping(ZrO_(2))_(0.9)(Sc_(2)O_(3))_(0.1)solid solution with yttria and/or ceria on the phase composition,local structure and transport properties of the crystals.The solid solu...This work is a study of the effect of co-doping(ZrO_(2))_(0.9)(Sc_(2)O_(3))_(0.1)solid solution with yttria and/or ceria on the phase composition,local structure and transport properties of the crystals.The solid solution crystals were grown using directional melt crystallization in cold crucible.We show that ceria co-doping of the crystals does not stabilize the high-temperature cubic phase in the entire crystal bulk,unlike yttria codoping.Ceria co-doping of the(ZrO_(2))_(0.9)(Sc_(2)O_(3))_(0.1)crystals increases their conductivity,whereas the addition of 1 mol.%yttria tangibly reduces the conductivity.Equimolar co-doping of the(ZrO_(2))0.9(-Sc_(2_O_(3))0.1 crystals with ceria and yttria changes the conductivity but slightly.Optical spectroscopy of the local structure of the crystals identified different types of optical centers.We found that the fraction of the trivalent cations having a vacancy in the first coordination sphere in the ceria co-doped crystals is smaller compared with that in the yttria co-doped crystals.展开更多
Nanomaterials with high specific surface area and high absorption capacity are attracting increased interest aimed at imparting the desired magnetic properties.This work is devoted to the study of the effect of heat t...Nanomaterials with high specific surface area and high absorption capacity are attracting increased interest aimed at imparting the desired magnetic properties.This work is devoted to the study of the effect of heat treatment in a hydrogen atmosphere on the microstructure,adsorption and magnetic properties of heterogeneous FePt/h-BN nanomaterials.Obtained via the polyol process,FePt nanoparticles(NPs)had a size<2 nm and were uniformly distributed over the surface of hexagonal boron nitride(h-BN)nanosheets.The temperature-activated fcc→fct phase transformation in ultrafine FePt NPs has been well documented.FePt NPs act as active centers dissociating H2 molecules and transfer adsorbed hydrogen atoms to the h-BN.Density functional theory(DFT)calculations also indicate that the h-BN substrate can absorb hydrogen adsorbed on the FePt NPs.This hydrogen circulation in the FePt/h-BN system promoted the fcc→fct phase transformation and allowed to control the magnetic properties.FePt/h-BN nanomaterials also exhibited a high adsorption capacity with respect to various organic dyes.展开更多
The grain boundary design was used to introduce boride Ti2B and TiB2nanoparticles of 5 nm in size into grain boundaries of nanocrystalline Ti50Ni25Cu25alloy.As a result,the maximum normalized microhardness was increas...The grain boundary design was used to introduce boride Ti2B and TiB2nanoparticles of 5 nm in size into grain boundaries of nanocrystalline Ti50Ni25Cu25alloy.As a result,the maximum normalized microhardness was increased by 20%and the theoretical limit of hardness is substantially approached.It is proposed that boride nanoparticles suppressed low-temperature grain-boundary sliding and,therefore,shifted the range of the anomalous behavior of Hall-Petch relation toward smaller sizes of the Ti-Ni-Cu nanocrystals.展开更多
基金kindly supported by the Russian Foundation for Basic Research (RFBR) (No. 16-05-00033A)
文摘Traditional methods of coal thermal resistance characterization are informative but considerably timeconsuming and require utilization of a complex and expensive equipment. This limits the effectiveness of their application. In this paper, authors experimentally investigated potential application of thermally stimulated acoustic emission method for developing of relatively simple and rapid coals thermal resistance assessment method. Features of thermally stimulated acoustic emission of anthracite, lignites and bituminous coal samples subject to cyclic thermal loading have been experimentally investigated.For the first time, it has been shown that there exists a relationship of such patterns with structural parameters and properties of the coal samples, as well as their thermal resistance. The results indicate the possibility of applying the method of thermally stimulated acoustic emission to control processes of cryogenic disintegration and thermal resistance of fossil coals. The description of the equipment and methodological support needed for the implementation of this method have been provided.
基金the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST«MISiS»(No.К2-2020-025),implemented by a governmental decree dated 16th of March 2013,N 211.
文摘The Mg–Zn–Y–Zr alloys with long-period stacking-ordered(LPSO)and W eutectic phases were investigated to develop new magnesium casting alloys.The temperatures for T6 heat treatment were selected based on the hardness and electrical conductivity measurements.The hot tearing susceptibility of the alloys with LPSO phase is lower than that of the alloys with W phase,which is associated with the freezing range of the alloys.However,the investigated alloys displayed the same fluidity.Under T6 conditions,increasing the Y content in the alloys resulted in increased yield strength,whereas other tensile properties were similar for the alloys.The corrosion resistance was higher for the alloys with LPSO phase compared to that of the alloys with W phase.Mg−2.5Zn−3.7Y−0.3Zr(mass fraction,%)alloy with LPSO phase possessed high castability and mechanical properties,with a corrosion rate of 2 mm/year.
基金financial support form the Ministry of Science and Higher Education of the Russian Federation in the framework of MegaGrant(No.220-7868-7477)。
文摘This work studied the effects of adding Zr and Mn in amounts less than 1wt%on the microstructure,mechanical properties,casting properties,and corrosion resistance of Mg-Zn-Cu alloys containing 2.5wt%Cu and 2.5wt%-6.5wt%Zn.The hardness and electrical conductivity measurements were used to find an optimal heat treatment schedule with the best mechanical properties.It has been established that Zr significantly increases the yield strength of the alloys due to a strong grain refinement effect.However,the presence of Mn and Zr has a detrimental effect on alloy’s elongation at fracture.It was shown that the precipitation of the Mg_(2)Cu cathodic phase in the alloy structure negatively affects the corrosion behavior.Nevertheless,the addition of Mn decreases the corrosion rate of the investigated alloys.The best combination of the mechanical,casting,and corrosion properties were achieved in the alloys containing 2.5wt%Cu and 5wt%Zn.However,the Mn or Zr addition can improve the properties of the alloys;for example,the addition of Mn or Zr increases the fluidity of the alloys.
基金Supported by the National Natural Science Foundation of China(Grant Nos.61771234,61727805,11674157,11674158,11774152,11822405,61521001,6157121961501222)+6 种基金the National Key Projects for Research and Development of China(Grant Nos.2016YFA0300401,2017YFB0503302,2017YFA03040022017YFB0503300)the start-up funding from ShanghaiTech University,Innovative Research Team in University(PCSIRT)the Natural Science Foundation of Shanghai Municipality(Grant No.20ZR1436100)the Science and Technology Commission of Shanghai Municipality(Grant No.YDZX20203100001438)Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves,Natural Science Foundation of Jiangsu Province(Grant No.BK20180006)the Fundamental Research Funds for the Central Universities(Grant No.020414380117)。
文摘In iron-based superconductors,the(0,π) or(π,0) nematicity,which describes an electronic anisotropy with a fourfold symmetry breaking,is well established and believed to be important for understanding the superconducting mechanism.However,how exactly such a nematic order observed in the normal state can be related to the superconducting pairing is still elusive.Here,by performing angular-dependent in-plane magnetoresistivity using ultra-thin flakes in the steep superconducting transition region,we unveil a nematic superconducting order along the(π,π) direction in electron-doped BaFe_(2-x)Ni_(x)As_(2) from under-doped to heavily overdoped regimes with x=0.065- 0.18.It shows superconducting gap maxima along the(π,π) direction rotated by 45° from the nematicity along(0, π) or(π,0) direction observed in the normal state.A similar(π,π)-type nematicity is also observed in the under-doped and optimally doped hole-type Ba1-yKyFe2 As_(2),with y=0.2-0.5.These results suggest that the(π,π) nematic superconducting order is a universal feature that needs to be taken into account in the superconducting pairing mechanism in iron-based superconductors.
基金Financial support from the Russian Science Foundation(Project 17-79-30071“Scientifically grounded optimization of power and mass-dimensional characteristics of planar SOFC stacksdevelopment of fuel processor for highly-efficient transport and stationary power plants”)is gratefully acknowledged.A part of experimental facilities used for this research were developed in framework of Project 14.B25.31.0018 funded by the Russian Ministry of Education and Science。
文摘This work is a study of the effect of co-doping(ZrO_(2))_(0.9)(Sc_(2)O_(3))_(0.1)solid solution with yttria and/or ceria on the phase composition,local structure and transport properties of the crystals.The solid solution crystals were grown using directional melt crystallization in cold crucible.We show that ceria co-doping of the crystals does not stabilize the high-temperature cubic phase in the entire crystal bulk,unlike yttria codoping.Ceria co-doping of the(ZrO_(2))_(0.9)(Sc_(2)O_(3))_(0.1)crystals increases their conductivity,whereas the addition of 1 mol.%yttria tangibly reduces the conductivity.Equimolar co-doping of the(ZrO_(2))0.9(-Sc_(2_O_(3))0.1 crystals with ceria and yttria changes the conductivity but slightly.Optical spectroscopy of the local structure of the crystals identified different types of optical centers.We found that the fraction of the trivalent cations having a vacancy in the first coordination sphere in the ceria co-doped crystals is smaller compared with that in the yttria co-doped crystals.
基金The authors gratefully acknowledge the financial support from the Russian Science Foundation(No.20-79-10286)in the part of materials synthesis,characterization and study of magnetic properties and the Strategic Academic Leadership Program“Priority 2030”at NUST(MISiS)(strategic project:“Biomedical materials and bioengineering”)in the part of water treatmentA.V.B.acknowledges CzechNanoLab Research Infrastructure supported by MEYS CR(No.LM2018110)in the part of in situ XPS analysisZ.I.P.grateful to the Joint Supercomputer Center of the Russian Academy of Sciences,the Information Technology Centre of Novosibirsk State University,and the Materials Modelling and Development Laboratory at NUST(MISIS)(supported via the grant from the Ministry of Education and Science of the Russian Federation)(No.14.Y26.31.0005)for providing access to the cluster computational resources.
文摘Nanomaterials with high specific surface area and high absorption capacity are attracting increased interest aimed at imparting the desired magnetic properties.This work is devoted to the study of the effect of heat treatment in a hydrogen atmosphere on the microstructure,adsorption and magnetic properties of heterogeneous FePt/h-BN nanomaterials.Obtained via the polyol process,FePt nanoparticles(NPs)had a size<2 nm and were uniformly distributed over the surface of hexagonal boron nitride(h-BN)nanosheets.The temperature-activated fcc→fct phase transformation in ultrafine FePt NPs has been well documented.FePt NPs act as active centers dissociating H2 molecules and transfer adsorbed hydrogen atoms to the h-BN.Density functional theory(DFT)calculations also indicate that the h-BN substrate can absorb hydrogen adsorbed on the FePt NPs.This hydrogen circulation in the FePt/h-BN system promoted the fcc→fct phase transformation and allowed to control the magnetic properties.FePt/h-BN nanomaterials also exhibited a high adsorption capacity with respect to various organic dyes.
基金supported by the Russian Foundation for Basic Research(project Nos.13-02-12087 and 14-0231284)
文摘The grain boundary design was used to introduce boride Ti2B and TiB2nanoparticles of 5 nm in size into grain boundaries of nanocrystalline Ti50Ni25Cu25alloy.As a result,the maximum normalized microhardness was increased by 20%and the theoretical limit of hardness is substantially approached.It is proposed that boride nanoparticles suppressed low-temperature grain-boundary sliding and,therefore,shifted the range of the anomalous behavior of Hall-Petch relation toward smaller sizes of the Ti-Ni-Cu nanocrystals.