期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
Enhancing the mechanical properties of casting eutectic high -entropy alloys via W addition
1
作者 Xu Yang Dezhi Chen +3 位作者 Li Feng Gang Qin Shiping Wu Ruirun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1364-1372,共9页
The effect of W element on the microstructure evolution and mechanical properties of Al_(1.25)CoCrFeNi3 eutectic high-entropy alloy and Al_(1.25)CoCrFeNi_(3-x)W_(x)(x=0,0.05,0.1,0.3,and 0.5;atomic ratio)high-entropy a... The effect of W element on the microstructure evolution and mechanical properties of Al_(1.25)CoCrFeNi3 eutectic high-entropy alloy and Al_(1.25)CoCrFeNi_(3-x)W_(x)(x=0,0.05,0.1,0.3,and 0.5;atomic ratio)high-entropy alloys(HEAs)were explored.Results show that the Al_(1.25)CoCrFeNi_(3-x)W_(x) HEAs are composed of face-centered cubic and body-centered cubic(BCC)phases.As W content increases,the microstructure changes from eutectic to dendritic.The addition of W lowers the nucleation barrier of the BCC phase,decreases the valence electron concentration of the HEAs,and replaces Al in the BCC phase,thus facilitating the nucleation of the BCC phase.Tensile results show that the addition of W greatly improves the mechanical properties,and solid-solution,heterogeneous-interface,and second-phase strengthening are the main strengthening mechanisms.The yield strength,tensile strength,and elongation of the Al_(1.25)CoCrFeNi2.95W0.05 HEA are 601.44 MPa,1132.26 MPa,and 15.94%,respectively,realizing a balance between strength and plasti-city.The fracture mode of the Al_(1.25)CoCrFeNi_(3-x)W_(x) HEAs is ductile–brittle mixed fracture,and the crack propagates and initiates in the BCC phase.The eutectic lamellar structure impedes crack propagation and maintains plasticity. 展开更多
关键词 high-entropy alloy microstructure mechanical property fracture behavior
下载PDF
Synergistic enhancement on mechanical properties and corrosion resistance of biodegradable Mg-Zn-Y alloy via V-microalloying
2
作者 Jiaxin Zhang Xin Ding +3 位作者 Ruirun Chen Wenchao Cao Jinshan Zhang Rui Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期530-545,共16页
For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with ... For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with long-period stacking ordered(LPSO)structure,and the effects of V on its microstructure,mechanical properties and corrosion resistance are investigated systematically.The results indicate that the grains are effectively refined by V addition,and the primaryα-Mg in Mg-Zn-Y-V0.1 alloy is most significantly refined,with grain size being decreased by 62%.The amount of 18R LPSO structure is increased owing to the V addition.The growth mode of the second phase(W-phase and 18R LPSO structure)is transformed to divorced growth pattern,which ascribes to the thermodynamic drive force of V to promote the nucleation of LPSO phase.Thus,18R LPSO structure presents a continuous distribution.Due to grains refinement and modification of second phase,the tensile strength and strain of alloys are both enhanced effectively.Especially,the ultimate tensile strength and the elongation of V0.1 alloy are 254 MPa and 15.26%,which are 41%and 61%higher than those of V-free alloy,respectively.Owing to the continuously distributed 18R LPSO structure with refined grains and stable product film,the weight loss and hydrogen evolution corrosion rates of V0.1 alloy are 7.1 and 6.2 mmy^(-1),respectively,which are 42.6%and 45.4%lower than those of V-free alloy. 展开更多
关键词 Corrosion Mechanical property V-microalloying LPSO SKPFM
下载PDF
Effect of Zn/Mg/Cu Additions on Hot Cracking Tendency and Performances of Al-Cu-Mg-Zn Alloys for Liquid Forging 被引量:4
3
作者 孙永根 杜之明 +2 位作者 SU Yanni CHENG Yuansheng LIU Yongwang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期176-182,共7页
During the process of liquid forging, a host of hot cracking defects were found in the Al-CuMg-Zn aluminum alloy. Therefore, mechanical tests and analyses by optical microscope, scanning electron microscope, and X-ray... During the process of liquid forging, a host of hot cracking defects were found in the Al-CuMg-Zn aluminum alloy. Therefore, mechanical tests and analyses by optical microscope, scanning electron microscope, and X-ray diffraction were performed to research the influences of zinc, magnesium, and copper(three main alloying elements) on hot cracking tendency and mechanical properties. It was concluded that all the three alloying elements exerted different effects on the performances of newly designed alloys. And the impact of microstructures on properties of alloys was stronger than that of solution strengthening. Among new alloys, Al-5 Cu-4.5 Mg-2.5 Zn alloy shows better properties as follows: σb=327 MPa, δ=2.7%, HB=107 N/mm^2, and HCS=40. 展开更多
关键词 liquid FORGING Al-Cu-Mg-Zn alloys mechanical properties hot CRACKING TENDENCY
下载PDF
Effect of heat treatment and thermomechanical processing on microstructure and tensile property of Ti-44Al-8Nb-0.2W-0.2B-0.5Y alloy 被引量:2
4
作者 Xiao-peng Wang Fan-tao Kong +3 位作者 Xiao-ping Cao Shu-zhi Zhang Chang-jiang Zhang Yu-yong Chen 《China Foundry》 SCIE CAS 2020年第6期447-454,共8页
High Nb-TiAl (Ti-44Al-8Nb-0.2W-0.2B-0.5Y,at.%) ingot was fabricated by vacuum arc remelting (VAR).The as-cast ingot was hot-isostatic pressed (HIP) and homogenizing annealing processed.The influence of heat treatment ... High Nb-TiAl (Ti-44Al-8Nb-0.2W-0.2B-0.5Y,at.%) ingot was fabricated by vacuum arc remelting (VAR).The as-cast ingot was hot-isostatic pressed (HIP) and homogenizing annealing processed.The influence of heat treatment temperature and thermomechanical processing on the microstructure and tensile property of the alloy was investigated by X-ray diffractometry (XRD),scanning electron microscopy (SEM) and tensile tests.It was found that the high Nb-TiAl alloy after HIP and annealing was mainly composed of coarse α2/γ lamellae,β/B2 phase and γ phase and the solidification path of this alloy was:L→L+β→β→α+β→α→α+β+γ→α2+β+γ.The water quenching results showed that the alloy was in α single phase region at 1,340 °C.After heating at 1,340 °C for 30 min followed by furnace cooling,the alloy showed a full lamellar microstructure and its ultimate tensile strength was about 538 MPa,with an elongation of 0.3% at room temperature.Free-crack forged pancakes with fine-grained fully lamellar structure (FFLS) were obtained with an initial deformation temperature of 1,340 °C and the ultimate tensile strength of forged alloy was about 820 MPa,with an elongation of 0.9% at room temperature,which was much higher than that of alloy after HIP and annealing because of microstructural refinement. 展开更多
关键词 high Nb-TiAl alloy heat treatment MICROSTRUCTURE tensile property
下载PDF
A novel method towards improving the hydrogen storage properties of hypoeutectic Mg-Ni alloy via ultrasonic treatment 被引量:1
5
作者 Xin Ding Ruirun Chen +4 位作者 Xiaoyu Chen Hongze Fang Qi Wang Yanqing Su Jingjie Guo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期903-915,共13页
Ultrasonic treatment has great contributions on modifying the morphology,dimension and distribution of constituent phases during solidification,which serve as dominate factors influencing the hydrogen storage performa... Ultrasonic treatment has great contributions on modifying the morphology,dimension and distribution of constituent phases during solidification,which serve as dominate factors influencing the hydrogen storage performance of Mg-based alloys.In this research,ultrasonic treatment is utilized as a novel method to enhance the de-/hydriding properties of Mg-2Ni(at.%)alloy.Due to ultrasonic treatment,the microstructure of as-cast alloy is significantly refined and homogenized.Ascribing to the increased eutectic boundaries and shortened distance insideα-Mg for hydrogen atoms diffusion,the hydrogen uptake capacities and isothermal de-/hydriding rates improve effectively,especially at lower temperature.The peak desorption temperature reduces from 392.99°C to 345.56°C,and the dehydriding activation energy decreases from 101.93 k J mol^(-1)to 88.65 k J mol^(-1).Weakened hysteresis of plateau pressures and slightly optimized thermodynamics are determined from the pressure-composition isotherms.Owing to the refined primary Mg,a larger amount of hydrogen with the higher hydriding proportion is absorbed in the first stage when hydrides nucleate in eutectic region and grow on primary Mg periphery subsequently before MgH2colonies impinging,resulting in the enhancement of hydrogenation rates and capacities. 展开更多
关键词 Hydrogen storage Mg-Ni alloy Ultrasonic treatment Dehydriding kinetics
下载PDF
Effect of Rare Earth on Microstructure of γ-TiAl Intermetallics 被引量:6
6
作者 孔凡涛 陈子勇 +2 位作者 田竞 陈玉勇 贾均 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第2期163-166,共4页
The rare earth (RE) elements (Ce, La) were added to binary Ti 47% Al alloys (atomic fraction) by Induction Skull Melting. The element Ce of 1.0 atomic percent was added individually, and La of 0.2 atomic percent was ... The rare earth (RE) elements (Ce, La) were added to binary Ti 47% Al alloys (atomic fraction) by Induction Skull Melting. The element Ce of 1.0 atomic percent was added individually, and La of 0.2 atomic percent was added individually. This article studied the influences of rare earth metal (Ce, La) on microstructure of as cast TiAl based alloy by XRD, SEM, EMPA and TEM measurement methodology. The results show that most of rare earth rich phases (AlCe, AlLa) are uniformly distributed in grain boundary in the shape of discontinuous network, and some particles of rare earth rich phases within the grains are mainly ellipsoids. In addition, rare earth element can obviously refine the grain size and the lamellar thickness of as cast TiAl based alloy samples. The grain size of Ti 47Al 1.0Ce 0.2La alloy reaches about 30~80 μm, and the lamellar thickness of its γ phase and α 2 phase are less than 200 and 20 nm, respectively. 展开更多
关键词 metal materials TiAl based alloy MICROSTRUCTURE grain size lamellar thickness rare earths
下载PDF
Effect of rare earths on mechanical properties of plasma nitrocarburized surface layer of 17-4PH steel 被引量:7
7
作者 刘瑞良 闫牧夫 吴丹蕾 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期1056-1061,共6页
The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,... The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ... 展开更多
关键词 17-4PH steel plasma nitrocarburizing mechanical properties rare earths
下载PDF
Microstructures,micro-segregation and solidification path of directionally solidified Ti-45Al-5Nb alloy 被引量:7
8
作者 Liang-shun Luo Tong Liu +3 位作者 Kun Li Yan-qing Su Jing-jie Guo Heng-zhi Fu 《China Foundry》 SCIE 2016年第2期107-113,共7页
To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb(at.%) alloy, Bridgman-type directional solidification and thermodynamics calculations were ... To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb(at.%) alloy, Bridgman-type directional solidification and thermodynamics calculations were performed on the alloy. The microstructures, micro-segregation and solidification path were investigated.The results show that the β phase is the primary phase of the alloy at growth rates of 5-20 μm·s^(-1) under the temperature gradients of 15-20 K·mm^(-1), and the primary phase is transformed into an α phase at relatively higher growth rates(V >20 μm·s^(-1)). The mainly S-segregation and β-segregation can be observed in Ti-45Al-5Nb alloy at a growth rate of 10 μm·s^(-1) under a temperature gradient of 15 K·mm^(-1). The increase of temperature gradient to 20 K·mm^(-1) can eliminate β-segregation, but has no obvious effect on S-segregation. The results also show that 5 at.% Nb addition can expand the β phase region, increase the melting point of the alloy and induce the solidification path to become complicated. The equilibrium solidification path of Ti-45Al-5Nb alloy can be described as L L→β L+β L+β→αα+β_R β→ααα→γα+γα→α_2+γγ_R+(α_2+γ), in which β_R and γ_R mean the residual β and 展开更多
关键词 TiAl-Nb alloy directional solidification MICROSTRUCTURE MICRO-SEGREGATION solidification path
下载PDF
Effects of Annealing on Microstructure, Mechanical and Electrical Properties of AlCrCuFeMnTi High Entropy Alloy 被引量:5
9
作者 NONG Zldsheng NONG Zldsheng +3 位作者 ZHU Jingchuan YANG Xiawei YU Hailing LAI Zhonghong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1196-1200,共5页
The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a ho... The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a holding time of 4 h at each temperature. The effects of annealing on microstructure, mechanical and electrical properties of as-cast alloy were investigated by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that two C14 hexagonal structures remain unchanged after annealing the as-cast A1CrCuFeMnTi alloy specimens being heated to 1 100℃. Both annealed and as-cast microstructures show typical cast-dendrite morphology and similar elemental segregation. The hardness of alloys declines as the annealing temperature increases while the strength of as-cast alloy improves obviously by the annealing treatment. The electrical conductivities of annealed and as-cast alloys are influenced by the distribution of interdendrite re^ions which is rich in Cu element. 展开更多
关键词 high entropy alloy ANNEALING MICROSTRUCTURE mechanical properties electrical conductivity
下载PDF
Development and strengthening mechanisms of a hybrid CNTs@SiCp/Mg-6Zn composite fabricated by a novel method 被引量:5
10
作者 Chao Ding Xiaoshi Hu +3 位作者 Hailong Shi Weimin Gan Kun Wu Xiaojun Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1370-1379,共10页
The hybrid addition of CNTs was used to improve both the strengths and ductility of SiCp reinforced Mg matrix composites.A novel method was developed to simultaneously disperse SiCp and CNTs in Mg melt.Firstly,new CNT... The hybrid addition of CNTs was used to improve both the strengths and ductility of SiCp reinforced Mg matrix composites.A novel method was developed to simultaneously disperse SiCp and CNTs in Mg melt.Firstly,new CNTs@SiCp hybrid reinforcements were synthesized by CVD.Thus,CNTs were well pre-dispersed on the SiCp surfaces before they were added to Mg melt.Therefore,the following semisolid stirring and ultrasonic vibration dispersed the new hybrid reinforcements well in Mg-6Zn melt.The hybrid composite exhibits some unique features in microstructures.Although the distribution of SiCp was very uniform in the Mg-6Zn matrix,most CNTs distributed along the strips in the state of micro-clusters,in which CNTs were bonded very well with Mg matrix.Most of the CNTs kept their structure integrity during fabrication process.All these factors ensure that the hybrid composite have much higher strength and elongation than the mono SiC/Mg-6Zn composites.The dominant strengthening mechanism is the load transfer effect of CNTs.Apart from grain refinement,the CNTs toughen the composites by impeding the microcrack propagation inside the material.Thus,the hybrid CNTs@SiCp successfully realizes the reinforcing advantage of“1+1>2”. 展开更多
关键词 HYBRID CVD Mg matrix composites Strengthening mechanism Ultrasonic vibration
下载PDF
Research on Two-Step Hydro-Bulge Forming of Ellipsoidal Shell with Larger Axis Length Ratio 被引量:5
11
作者 Shi-Jian Yuan Lan Hu +2 位作者 Zhu-Bin He Bu-Gang Teng Zhong-Ren Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期93-98,共6页
The two-step hydro-bulge forming technique was proposed to manufacture the ellipsoidal shell with the length ratio of the long axis to the short axis larger than 1.4. A central tube was introduced into the first step ... The two-step hydro-bulge forming technique was proposed to manufacture the ellipsoidal shell with the length ratio of the long axis to the short axis larger than 1.4. A central tube was introduced into the first step of the hydro-bulge forming process to constrain the over growth of the short axis during bulging,and then the central tube was replaced with two polar plates in the second step of the hydro-bulge forming process to manufacture an integral ellipsoidal shell. It is shown that the central tube restricts the growth of the short axis and simultaneously reduces the shrunk tendency of the long axis. The wrinkling occurs due to the latitudinal compressive stress at the equator at the early stage of hydro-bulge forming. However,with the increase of internal pressure,the compressive stress areas gradually decrease and finally the tensile latitudinal stress occupies approximately the whole shell,thus the wrinkles are eliminated. A sound ellipsoidal shell with the axis length ratio of 1.8 is obtained after two-step hydro bulging. 展开更多
关键词 hydro-bulge forming ellipsoidal shell latitudinal stress WRINKLING axis length ratio
下载PDF
Improving the Young’s modulus of Mg via alloying and compositing–A short review 被引量:5
12
作者 Hailong Shi Chao Xu +3 位作者 Xiaoshi Hu Weimin Gan Kun Wu Xiaojun Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第8期2009-2024,共16页
Lightweight,high-modulus structural materials are highly desired in many applications like aerospace,automobile and biomedical instruments.As the lightest metallic structural material,magnesium(Mg)has great potential ... Lightweight,high-modulus structural materials are highly desired in many applications like aerospace,automobile and biomedical instruments.As the lightest metallic structural material,magnesium(Mg)has great potential but is limited by its low intrinsic Young’s modulus.This paper reviews the investigations on high-modulus Mg-based materials during the last decades.The nature of elastic modulus is introduced,and typical high-modulus Mg alloys and Mg matrix composites are reviewed.Specifically,Mg alloys enhance Young’s modulus of pure Mg mainly by introducing suitable alloying elements to promote the precipitation of high-modulus second phases in the alloy system.Differently,Mg matrix composites improve Young’s modulus by incorporating high-modulus particles,whiskers and fibers into the Mg matrix.The modulus strengthening effectiveness brought by the two approaches is compared,and Mg matrix composites stand out as a more promising solution.In addition,two well-accepted modulus prediction models(Halpin-Tsai and Rule of mixtures(ROM))for different Mg matrix composites are reviewed.The effects of reinforcement type,size,volume fraction and interfacial bonding condition on the modulus of Mg matrix composites are discussed.Finally,the existing challenges and development trends of high-modulus Mg-based materials are proposed and prospected. 展开更多
关键词 Elastic modulus Mg alloy Mg matrix composite Modulus prediction model Mechanical properties
下载PDF
Characterization of zirconia-based slurries with different binders for titanium investment casting 被引量:4
13
作者 Zhao Ertuan Kong Fantao +2 位作者 Chen Yanfei Chen Ruirun Chen Yuyong 《China Foundry》 SCIE CAS 2012年第2期125-130,共6页
The materials and physical properties of primary slurry are crucial to the surface quality of the finished castings,especially for high reactivity titanium alloys.The aim of this study is to investigate the influence ... The materials and physical properties of primary slurry are crucial to the surface quality of the finished castings,especially for high reactivity titanium alloys.The aim of this study is to investigate the influence of different binders on the physical properties of primary slurry for titanium alloy investment casting.The zirconia-based slurries with different binders were evaluated by comparing the parameters:viscosity,bulk density,plate weight, suspensibility,gel velocity and strength.The results indicate that a higher viscosity of binder leads to a higher viscosity and suspensibility of slurry with the same powder/binder ratio.The retention rate and thickness of primary layer increase with an increase in the viscosity of the slurry,and a higher retention rate is associated with a thicker primary layer.The gel velocity of the slurry is correlated with the gel velocity of the binder.The green strength and the baked strength of the primary layer are determined by the properties of the binder after gel and by the production of the binder after fired,respectively. 展开更多
关键词 primary slurry BINDER investment casting titanium alloy
下载PDF
Effect of excitation current intensity on mechanical properties of ZL205A castings solidified under a traveling magnetic field 被引量:3
14
作者 Xue-yi Fan Liang Wang +6 位作者 Zhi-qiang Du Yan-qing Su Jian-bing Zhang Liang-shun Luo Zu-chuan Liu Da-ming Xu Jing-jie Guo 《China Foundry》 SCIE CAS 2015年第3期196-201,共6页
The effect of excitation current intensity on the mechanical properties of ZL205 A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current i... The effect of excitation current intensity on the mechanical properties of ZL205 A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current intensity of the traveling magnetic field has a great influence on the mechanical properties of the ZL205 A castings. When the excitation current intensity is 15 A, the tensile strength and elongation of ZL205 A alloy castings increase 27.2% and 67.7%, respectively, compared with those of the same alloy solidified under gravity. The improvement of mechanical properties is attributed to the decrease of micro-porosity in the alloy. Under the traveling magnetic field, the feeding pressure in the alloy melt before solidification can be enhanced due to the electromagnetic force. Moreover, the melt flow induced by the traveling magnetic field can decrease the temperature gradient. The feeding resistance will be increased because the temperature gradient decrease. So traveling magnetic field has an optimum effect on feeding. 展开更多
关键词 合金铸件 运动磁场 电流强度 机械性能 凝固 励磁 温度梯度 拉伸强度
下载PDF
Microstructure and properties of novel quinary multi-principal element alloys with refractory elements 被引量:3
15
作者 Na-na Guo Liang Wang +4 位作者 Yan-qing Su Liang-shun Luo Xin-zhong Li Jing-jie Guo Heng-zhi Fu 《China Foundry》 SCIE CAS 2015年第5期319-325,共7页
Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel ... Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel high temperature alloy. The five alloys exhibit different dendritic and interdendritic morphologies. The Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys formed disordered solid solution phases with body-centered cubic structure, and exhibited high compressive strength and good plasticity. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are composed with Laves phase(Hf Mo2) and disordered solid solution phases with body-centered cubic structure. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are harder and more brittle than the other three alloys due to the existence of hard and brittle Laves phases. At high temperatures, the strength decreases to below 300 MPa for the Ti Zr Hf VNb and Ti Zr Hf Mo V alloys. Solution strengthening is the primary strengthening mechanism of the Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys, and brittle Laves phase is the main cause for the low ductility of the Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys. 展开更多
关键词 high temperature alloys high-entropy alloy crystal structure and microstructure HARDNESS compressive property
下载PDF
DYNAMIC COMPACTION OF PURE COPPER POWDER USING PULSED MAGNETIC FORCE 被引量:3
16
作者 H.P. Yu C.F. Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第4期277-283,共7页
The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on th... The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on the homogeneity and the compaction density of compacted specimens were presented and discussed. The results indicated that the compaction density of specimens increased with the augment of discharge voltage and time. During unidirectional compaction, there was a density gradient along the loading direction in the compacted specimen, and the minimum compaction density was localized to the center of the bottom of the specimen. The larger the aspect ratio of a powder body, the higher the compaction density of the compacted specimen. And high conductivity drivers were beneficial to the increase of the compaction density. The iterative and the double direction compaction were efficient means to manufacture the homogeneous and high-density powder parts. 展开更多
关键词 magnetic pulse compaction copper powder compaction density electromagnetic forming
下载PDF
Effect of Ultrasonic Vibration on Deformation in Micro-blanking Process with Copper Foil 被引量:2
17
作者 王春举 LIU Yang +3 位作者 WAN Shengxiang GUO Bin SHAN Debin ZHANG Bo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期404-409,共6页
Effect of ultrasonic vibration on deformation in micro-blanking was investigated with copper foils of different grain sizes using a developed device. It is found that maximum shearing strength is decreased by ultrason... Effect of ultrasonic vibration on deformation in micro-blanking was investigated with copper foils of different grain sizes using a developed device. It is found that maximum shearing strength is decreased by ultrasonic vibration, and this effect becomes bigger for coarse grain than that for fine grain, which can be attributed to acoustic softening effect considering the absorbed acoustic energy. Surface roughness R_a of smooth zone decreases for the polishing effect of vibration at the lateral contact surface. When ultrasonic vibration is applied, the sheared deformation area becomes relatively narrow, and it leads to the reduction of radius of rollover. The analysis of cross section in sheared deformation area shows that the crack initiation is inhabited for the existence of acoustic softening, and the proportion of smooth zone is increased. Also, angle of crack propagation becomes smaller because of periodic strain, and the angle of facture surface is decreased. As a result, the quality of micro-sheet parts is improved by applying ultrasonic vibration. 展开更多
关键词 micro-blanking ultrasonic vibration maximum SHEARING strength acoustic SOFTENING EFFECT periodic strain crack INITIATION and propagation
下载PDF
Compressive Deformation Induced Nanocrystallization of a Supercooled Zr-Based Bulk Metallic Glass 被引量:2
18
作者 郭晓琳 单德彬 +1 位作者 马明臻 郭斌 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第6期2173-2176,共4页
The nanocrystallization behaviour of a bulk Zr-based metallic glass subjected to compressive stress is investigated in the supercooled liquid region. Compared with annealing treatments without compressive stress, comp... The nanocrystallization behaviour of a bulk Zr-based metallic glass subjected to compressive stress is investigated in the supercooled liquid region. Compared with annealing treatments without compressive stress, compressive deformation promotes the development of nucleation and suppresses the coarsening of nanocrystallites at high temperatures. 展开更多
关键词 LIQUID REGION AMORPHOUS-ALLOYS TRANSITION TEMPERATURE PHASE-SEPARATION HIGH-PRESSURE CRYSTALLIZATION BEHAVIOR NUCLEATION PLASTICITY MECHANISM
下载PDF
Microstructure evolution and its effect on mechanical properties of cast Ti48Al6NbxSi alloys 被引量:3
19
作者 Qin Xu Hong-ze Fang +3 位作者 Chao Wu Qi Wang Hong-zhi Cui Rui-run Chen 《China Foundry》 SCIE CAS 2020年第6期416-422,共7页
In order to improve mechanical properties of TiAlNb alloys,different contents of silicon were added into Ti48Al6Nb alloy.The Ti48Al6NbxSi (x=0,0.1,0.2,0.3,0.4 and 0.5,at.%) alloys were prepared by vacuum arc melting.T... In order to improve mechanical properties of TiAlNb alloys,different contents of silicon were added into Ti48Al6Nb alloy.The Ti48Al6NbxSi (x=0,0.1,0.2,0.3,0.4 and 0.5,at.%) alloys were prepared by vacuum arc melting.The phase constitution,microstructure evolution and mechanical properties of the alloys were studied.Results show that the Ti48Al6NbxSi alloys consist of γ-TiAl phase,α2-Ti3Al phase and B2 phase,and Ti5Si3 silicide phase is formed when the addition of silicon is higher than 0.3at.%.The addition of silicon leads to the decrease in γ phase and increase in α2 phase.The formation of silicide decreases the amount of Nb dissolved in the TiAl matrix,and therefore decreases B2 phase.Compressive tests show that the ultimate strength of the alloys increases from 2,063 MPa to 2,281 MPa with an increase in silicon from 0 to 0.5at.%,while the fracture strain decreases from 34.7% to 30.8%.The increase of compressive strength and decrease of fracture strain can be attributed to the decrease of B2 phase and the formation of Ti5Si3 phase by the addition of silicon.The strengthening mechanism is changed from solid solution strengthening when the addition of silicon is less than 0.3at.% to combination of solid solution strengthening and secondary phase strengthening when the addition of silicon is higher than 0.3at.%. 展开更多
关键词 TiAl-based alloy MICROSTRUCTURE mechanical property strengthening
下载PDF
Effect of growth rate on microstructure and microhardness of directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B alloy 被引量:2
20
作者 Zhi-ping Li Hong-ying Xia +5 位作者 Liang-shun Luo Bin-bin Wang Liang Wang Yan-qing Su Jing-jie Guo Heng-zhi Fu 《China Foundry》 SCIE 2020年第4期293-300,共8页
The effect of growth rates (V=2-50 μm·s-1) on microstructure and microhardness of directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B (at.%) alloy at a constant temperature gradient (G=18 K·mm-1) was ... The effect of growth rates (V=2-50 μm·s-1) on microstructure and microhardness of directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B (at.%) alloy at a constant temperature gradient (G=18 K·mm-1) was investigated. Results indicated that β phase was the primary phase of the directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B alloy. As the growth rate increases, the solid/liquid interface turns from cellular growth to dendric growth. The interlamellar spacing (λs) decreases with the increase of growth rate according to the relationship of λs=3.39V -0.31. The solidification segregation occurs due to the enrichment of β-stabilizing element Nb, Cr in primary β phase during solidification;moreover, the degree of the segregation increases with the growth rate, resulting in the emergence of B2 phase in lamellar colonies at high growth rates. The microhardness (Hv) grows with the growth rate based on the equation of HV=328.69V 0.072, which mainly attributes to the microstructure refinement. 展开更多
关键词 beta-solidifying TiAl alloys directional solidification microstructure evolution microstructure control MICROHARDNESS
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部