Partial differential equations (PDEs) combined with suitably chosen boundaryconditions are effective in creating free form surfaces. In this paper, a fourth order partialdifferential equation and boundary conditions u...Partial differential equations (PDEs) combined with suitably chosen boundaryconditions are effective in creating free form surfaces. In this paper, a fourth order partialdifferential equation and boundary conditions up to tangential continuity are introduced. Thegeneral solution is divided into a closed form solution and a non-closed form one leading to a mixedsolution to the PDE. The obtained solution is applied to a number of surface modelling examplesincluding glass shape design, vase surface creation and arbitrary surface representation.展开更多
文摘Partial differential equations (PDEs) combined with suitably chosen boundaryconditions are effective in creating free form surfaces. In this paper, a fourth order partialdifferential equation and boundary conditions up to tangential continuity are introduced. Thegeneral solution is divided into a closed form solution and a non-closed form one leading to a mixedsolution to the PDE. The obtained solution is applied to a number of surface modelling examplesincluding glass shape design, vase surface creation and arbitrary surface representation.