In previous and this studies it appears that the linear and nonlinear wave theory-can not accurately and easily predict the water particle velocities: Therefore, different from the theoretical considerations, in this ...In previous and this studies it appears that the linear and nonlinear wave theory-can not accurately and easily predict the water particle velocities: Therefore, different from the theoretical considerations, in this study we have attempted to determine the transfer function empirically. Laboratory experiments were performed under various wave conditions. The empirical formulas of the transfer function of the wave height, angular frequency and water particle velocity were obtained on the basis of these test data by dimensional analysis and regression analysis. In intermediate and deep water depth conditions, the transfer function was only a function of a nondimensional parameter which is composed of the angular frequency, the depth of the velocity gauge under the still water level, water depth and the acceleration of gravity. Finally, the empirical formulas were compared with experimental data and observational data form present and Cavaleri's (1978) studies. The empirical formulas were found to be in sufficient correltion with these data.展开更多
文摘In previous and this studies it appears that the linear and nonlinear wave theory-can not accurately and easily predict the water particle velocities: Therefore, different from the theoretical considerations, in this study we have attempted to determine the transfer function empirically. Laboratory experiments were performed under various wave conditions. The empirical formulas of the transfer function of the wave height, angular frequency and water particle velocity were obtained on the basis of these test data by dimensional analysis and regression analysis. In intermediate and deep water depth conditions, the transfer function was only a function of a nondimensional parameter which is composed of the angular frequency, the depth of the velocity gauge under the still water level, water depth and the acceleration of gravity. Finally, the empirical formulas were compared with experimental data and observational data form present and Cavaleri's (1978) studies. The empirical formulas were found to be in sufficient correltion with these data.