In this paper, considering both cluster heads and sensor nodes, we propose a novel evolving a network model based on a random walk to study the fault tolerance decrease of wireless sensor networks (WSNs) due to node...In this paper, considering both cluster heads and sensor nodes, we propose a novel evolving a network model based on a random walk to study the fault tolerance decrease of wireless sensor networks (WSNs) due to node failure, and discuss the spreading dynamic behavior of viruses in the evolution model. A theoretical analysis shows that the WSN generated by such an evolution model not only has a strong fault tolerance, but also can dynamically balance the energy loss of the entire network. It is also found that although the increase of the density of cluster heads in the network reduces the network efficiency, it can effectively inhibit the spread of viruses. In addition, the heterogeneity of the network improves the network efficiency and enhances the virus prevalence. We confirm all the theoretical results with sufficient numerical simulations.展开更多
In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical a...In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.展开更多
The Binary-based attestation (BA) mechanism presented by the Trusted Computing Group can equip the application with the capability of genuinely identifying configurations of remote system. However, BA only supports ...The Binary-based attestation (BA) mechanism presented by the Trusted Computing Group can equip the application with the capability of genuinely identifying configurations of remote system. However, BA only supports the attestation for specific patterns of binary codes defined by a trusted party, mostly the software vendor, for a particular version of a software. In this paper, we present a Source-Code Oriented Attestation (SCOA) framework to enable custom built application to be attested to in the TCG attestation architecture. In SCOA, security attributes are bond with the source codes of an application instead of its binaries codes. With a proof chain generated by a Trusted Building System to record the building procedure, the challengers can determine whether the binary interacted with is genuinely built from a particular set of source codes. Moreover, with the security attribute certificates assigned to the source codes, they can determine the trustworthiness of the binary. In this paper, we present a TBS implementation with virtualization.展开更多
Chosen Ciphertext Attack (CCA) security on the standard model is widely accepted as the standard security notion for the public key cryptosystem. The existing CCA-secure public key cryptosystems on the standard mode...Chosen Ciphertext Attack (CCA) security on the standard model is widely accepted as the standard security notion for the public key cryptosystem. The existing CCA-secure public key cryptosystems on the standard model are expensive in terms of efficiency and practicality. In this paper, an efficient and practical public key cryptosystem is presented over the group of signed quadratic residues. It is provably secure against CCA on the standard model. Furthermore, public verifiability for this scheme is also realized in the way that projects the verification privacy key into public key on trapdoor pretending. It will be useful to devise efficient CCA-secure threshold and proxy re-encryption schemes on the standard model.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61103231 and 61103230)the Innovation Program of Graduate Scientific Research in Institution of Higher Education of Jiangsu Province, China (Grant No. CXZZ11 0401)
文摘In this paper, considering both cluster heads and sensor nodes, we propose a novel evolving a network model based on a random walk to study the fault tolerance decrease of wireless sensor networks (WSNs) due to node failure, and discuss the spreading dynamic behavior of viruses in the evolution model. A theoretical analysis shows that the WSN generated by such an evolution model not only has a strong fault tolerance, but also can dynamically balance the energy loss of the entire network. It is also found that although the increase of the density of cluster heads in the network reduces the network efficiency, it can effectively inhibit the spread of viruses. In addition, the heterogeneity of the network improves the network efficiency and enhances the virus prevalence. We confirm all the theoretical results with sufficient numerical simulations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61103231 and 61103230)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012082)+2 种基金the Innovation Program of Graduate Scientific Research in Institution of Higher Education of Jiangsu Province,China (Grant No. CXZZ11 0401)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2011JM8012)the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force (Grant No. WJY201218)
文摘In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.
基金This work is under support of National Natural Science Foundation of China under grant No. 60873238.
文摘The Binary-based attestation (BA) mechanism presented by the Trusted Computing Group can equip the application with the capability of genuinely identifying configurations of remote system. However, BA only supports the attestation for specific patterns of binary codes defined by a trusted party, mostly the software vendor, for a particular version of a software. In this paper, we present a Source-Code Oriented Attestation (SCOA) framework to enable custom built application to be attested to in the TCG attestation architecture. In SCOA, security attributes are bond with the source codes of an application instead of its binaries codes. With a proof chain generated by a Trusted Building System to record the building procedure, the challengers can determine whether the binary interacted with is genuinely built from a particular set of source codes. Moreover, with the security attribute certificates assigned to the source codes, they can determine the trustworthiness of the binary. In this paper, we present a TBS implementation with virtualization.
基金supported by the National Natural Science Foundation of China (Nos. 61272492, 61103231, 61103230, 61402530, and 61202492)the Natural Science Foundation of Shaanxi Provience (Nos. 2013JM8012 and 2014JQ8301)
文摘Chosen Ciphertext Attack (CCA) security on the standard model is widely accepted as the standard security notion for the public key cryptosystem. The existing CCA-secure public key cryptosystems on the standard model are expensive in terms of efficiency and practicality. In this paper, an efficient and practical public key cryptosystem is presented over the group of signed quadratic residues. It is provably secure against CCA on the standard model. Furthermore, public verifiability for this scheme is also realized in the way that projects the verification privacy key into public key on trapdoor pretending. It will be useful to devise efficient CCA-secure threshold and proxy re-encryption schemes on the standard model.