Memory impairment in children is an ongoing issue worldwide related to a learning disability. This neurobiological condition has been suggested to associate with bisphenol A (BPA) exposure during pregnancy. BPA is an ...Memory impairment in children is an ongoing issue worldwide related to a learning disability. This neurobiological condition has been suggested to associate with bisphenol A (BPA) exposure during pregnancy. BPA is an inorganic compound used to produce polycarbonate plastics and epoxy resins. We conduct this study to investigate the effects of prenatal BPA exposure on the level of the N-methyl-D-aspartate (NMDA) receptor subunits, synaptic markers of the hippocampus and neurobehavioral outcomes in rats. The pregnant rats were given a daily dose of 5 mg/kg and 50 mg/kg of BPA with 0.5% Tween 80 orally from gestation day 2 until 21 (GD21). The level of GluN2A, GluN2B, PSD-95 and synapsin I in the hippocampus and its neurobehaviour outcomes were quantified and evaluated in the male foetus and adolescent rat. Prenatal BPA exposure reduced GluN2A, GluN2B, synapsin I and PSD-95 (Postsynaptic Density-95) in the male foetus and adolescent rat hippocampus compared to the control group. The prenatal BPA exposed rats demonstrated anxiety-related behaviour and impairment in aversive and spatial memory. The findings suggested that the impairment in neurobehavioral performance may inhibit the signalling pathway in the NMDA receptor subunits in the male foetus rat hippocampus leading to learning and memory deficits when reaching adolescence.展开更多
基金funded by the Fundamental Research Grant SchemeMinistry of Higher Education+2 种基金Malaysia (Grant No. FRGS/1/2018/SKK08/UITM/02/9)Geran Penyelidikan KhasUniversiti Teknologi MARA [Grant No. 600-RMC/GPK 5/3 (191/2020)]
文摘Memory impairment in children is an ongoing issue worldwide related to a learning disability. This neurobiological condition has been suggested to associate with bisphenol A (BPA) exposure during pregnancy. BPA is an inorganic compound used to produce polycarbonate plastics and epoxy resins. We conduct this study to investigate the effects of prenatal BPA exposure on the level of the N-methyl-D-aspartate (NMDA) receptor subunits, synaptic markers of the hippocampus and neurobehavioral outcomes in rats. The pregnant rats were given a daily dose of 5 mg/kg and 50 mg/kg of BPA with 0.5% Tween 80 orally from gestation day 2 until 21 (GD21). The level of GluN2A, GluN2B, PSD-95 and synapsin I in the hippocampus and its neurobehaviour outcomes were quantified and evaluated in the male foetus and adolescent rat. Prenatal BPA exposure reduced GluN2A, GluN2B, synapsin I and PSD-95 (Postsynaptic Density-95) in the male foetus and adolescent rat hippocampus compared to the control group. The prenatal BPA exposed rats demonstrated anxiety-related behaviour and impairment in aversive and spatial memory. The findings suggested that the impairment in neurobehavioral performance may inhibit the signalling pathway in the NMDA receptor subunits in the male foetus rat hippocampus leading to learning and memory deficits when reaching adolescence.