期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
World's Energy Transition and Chinese-style Modern Energy Revolution under Carbon Neutrality(Ⅰ)
1
作者 Zou Caineng Xiong Bo +6 位作者 Li Shixiang Ma Feng Pan Songqi Liu Hanlin Zhang Guosheng Zhao Qun Guan Chunxiao 《China Oil & Gas》 CAS 2024年第1期3-13,共11页
Under global consensus on carbon neutrality and the intensification of regional conflicts,new energy has become the primary direction for various countries to achieve energy security and green development.Represented ... Under global consensus on carbon neutrality and the intensification of regional conflicts,new energy has become the primary direction for various countries to achieve energy security and green development.Represented by wind,solar,geothermal,hydrogen and stored energy,and controllable nuclear fusion,the technological and scale advantages of new energy are being continuously strengthened.Low-cost wind,solar,and stored energy will support the global energy transition.The production and utilization of new energy enter a rapid development phase.In 2022,the average global consumption of new energy accounted for 18.2%,and it is expected to reach around 55%by 2050.The distribution of the world's energy resources,consumption regions,technological development,per capita consumption,energy-saving fields,and carbon emissions is uneven.The acceleration of low-carbon development in fossil fuels,the scale-up of renewable energy,and the intelligentization of energy management drives the rapid transition of global energy. 展开更多
关键词 TRANSITION STRENGTHENED ACCELERATION
下载PDF
World’s Energy Transition and Chinese-style Modern Energy Revolution under Carbon Neutrality (Ⅱ)
2
作者 Zou Caineng Xiong Bo +6 位作者 Li Shixiang Ma Feng Pan Songqi Liu Hanlin Zhang Guosheng Zhao Qun Guan Chunxiao 《China Oil & Gas》 CAS 2024年第2期11-19,共9页
Chinese-style modernization emphasizes the harmonious coexistence of man and nature and actively yet prudently promotes carbon peak and carbon neutrality.It delves deeply into the energy revolution,upholding the follo... Chinese-style modernization emphasizes the harmonious coexistence of man and nature and actively yet prudently promotes carbon peak and carbon neutrality.It delves deeply into the energy revolution,upholding the following principles:the“independence”of energy production,the“green”energy supply,the“security”of energy reserves,the“efficiency”of energy consumption,the“intelligence”of energy management,and the“economy”of energy costs.Efforts are being made to accelerate the planning and construction of a new type of energy system that is green and smart,with new energy,new electricity,new stored energy,and new smart energy as the mainstays,to ensure energy security.Currently,China is an energy power but not an energy superpower,and its energy consumption structure still needs further optimization.China’s new energy security strategy is composed of energy consumption revolution,energy supply revolution,energy technology revolution,and energy system revolution,complemented by comprehensive strengthening of international cooperation.This approach is aimed at advancing China’s energy revolution and transforming the nation’s energy supply pattern and shifting from a consumption mix in 2022. 展开更多
关键词 TRANSITION REVOLUTION SHIFTING
下载PDF
Review of renewable energy-based hydrogen production processes for sustainable energy innovation 被引量:15
3
作者 Mengjiao Wang Guizhou Wang +2 位作者 Zhenxin Sun Yukui Zhang Dong Xu 《Global Energy Interconnection》 2019年第5期437-444,共8页
In this review,we primarily analyze the hydrogen production technologies based on water and biomass,including the economic,technological,and environmental impacts of different types of hydrogen production technologies... In this review,we primarily analyze the hydrogen production technologies based on water and biomass,including the economic,technological,and environmental impacts of different types of hydrogen production technologies based on these materials,and comprehensively compare them.Our analyses indicate that all renewable energy-based approaches for hydrogen production are more environmentally friendly than fossil-based hydrogen generation approaches.However,the technical ease and economic efficiency of hydrogen production from renewable sources of energy needs to be further improved in order to be applied on a large scale.Compared with other renewable energy-based methods,hydrogen production via biomass electrolysis has several advantages,including the ease of directly using raw biomass.Furthermore,its environmental impact is smaller than other approaches.Moreover,using a noble metal,catalyst-free anode for this approach can ensure a considerably low power consumption,which makes it a promising candidate for clean and efficient hydrogen production in the future. 展开更多
关键词 RENEWABLES HYDROGEN production BIOMASS ECONOMICS Environmental impact.
下载PDF
Cobalt phthalocyanine promoted copper catalysts toward enhanced electro reduction of CO_(2)to C_(2):Synergistic catalysis or tandem catalysis?
4
作者 Yan Luo Jun Yang +6 位作者 Jundi Qin Kanghua Miao Dong Xiang Aidar Kuchkaev Dmitry Yakhvarov Chuansheng Hu Xiongwu Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期499-507,共9页
The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and deba... The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and debatable.Herein,copper nanowires(Cu NWs)were fabricated and decorated with cobalt phthalocyanine(CoPc).The electronic interaction between the Cu NWs,CoPc,CO_(2) and CO_(2)RR intermediates were explored by density functional theory(DFT)calculations.It was found that the selectivity and activity of CO_(2)RR towards C_(2)products on Cu NWs were considerably enhanced from 35.2%to 69.9%by surface decoration of CoPc.DFT calculations revealed that CO_(2)RR can proceed in the interphase between Cu substrate and CoPc,and the CO_(2)RR intermediates could synergistically bond with both Cu and Co metal centre in CuNWs-CoPc,which favours the adsorption of CO_(2),CO and CO_(2)RR intermediates,thus reducing the free energy for CO-COcoupling towards C_(2)products.The synergistic interaction was further extended to phthalocyanine(Pc)and other metal phthalocyanine derivatives(MPc),where a relatively weaker synergistic interaction of COintermediates with MPc and Cu substrate and only a slight enhancement of CO_(2)RR towards C_(2) products were observed.This study demonstrates a synergistic catalysis pathway for CO_(2)RR,a novel perspective in interpreting the role of CoPc in enhancing the activity and selectivity of CO_(2)RR on Cu NWs,in contrast to the conventional tandem catalysis mechanism. 展开更多
关键词 CO_(2)reduction reaction Raman spectroscopy Synergistic catalysis DFT calculation
下载PDF
A semi-classical model for the charge exchange and energy loss of slow highly charged ions in ultrathin materials
5
作者 Xun Guo Yanjun Fu +3 位作者 Xitong Zhang Xinwei Wang Yan Chen Jianming Xue 《Matter and Radiation at Extremes》 SCIE CAS 2019年第5期1-6,共6页
We present a simple and reliable method,based on the over-barrier model and Lindhard’s formula,to calculate the energy loss,charge transfer,and normalized intensity of highly charged ions penetrating through 2D ultra... We present a simple and reliable method,based on the over-barrier model and Lindhard’s formula,to calculate the energy loss,charge transfer,and normalized intensity of highly charged ions penetrating through 2D ultrathin materials,including graphene and carbon nanomembranes.According to our results,the interaction between the ions and the 2D material can be simplified as an equivalent two-body collision,and we find that full consideration of the charge exchange effect is key to understanding the mechanism of ion energy deposition in an ultrathin target.Not only can this semiclassical model be used to evaluate the ion irradiation effect to a very good level of accuracy,but it also provides important guidance for tailoring the properties of 2D materials using ion beams. 展开更多
关键词 CHARGE EXCHANGE energy
下载PDF
The Research Progress on the Occurrence Mechanism of Detained Hydrocarbon
6
作者 SONG Liping XUE Haitao +1 位作者 LU Shuangfang TIAN Shansi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第A01期164-165,共2页
Unconventional oil and gas resources are closely to the retaining ability of hydrocarbon of source rock. The detained hydrocarbon can be divided to two parties: organic retaining ability including the swelling and ad... Unconventional oil and gas resources are closely to the retaining ability of hydrocarbon of source rock. The detained hydrocarbon can be divided to two parties: organic retaining ability including the swelling and adsorption function of kerogen and retaining ability of organic pore, and inorganic retaining ability including adsorption of detrital minerals and retaining ability of inorganic pore. 展开更多
下载PDF
Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy 被引量:2
7
作者 ZOU Caineng WU Songtao +7 位作者 YANG Zhi PAN Songqi WANG Guofeng JIANG Xiaohua GUAN Modi YU Cong YU Zhichao SHEN Yue 《Petroleum Exploration and Development》 2023年第1期210-228,共19页
Carbon dioxide storage and utilization has become an inevitable trend and choice for sustainable development under the background of global climate change and carbon neutrality.Carbon industry which is dominated by CO... Carbon dioxide storage and utilization has become an inevitable trend and choice for sustainable development under the background of global climate change and carbon neutrality.Carbon industry which is dominated by CO_(2) capture,utilization and storage/CO_(2) capture and storage(CCUS/CCS)is becoming a new strategic industry under the goal of carbon neutrality.The sustainable development of carbon industry needs to learn from the experiences of global oil and gas industry development.There are three types of“carbon”in the earth system.Black carbon is the CO_(2) that has not been sequestered or used and remains in the atmosphere for a long time;grey carbon is the CO_(2) that has been fixed or permanently sequestered in the geological body,and blue carbon is the CO_(2) that could be converted into products for human use through biological,physical,chemical and other ways.The carbon industry system covers carbon generation,carbon capture,carbon transportation,carbon utilization,carbon sequestration,carbon products,carbon finance,and other businesses.It is a revolutionary industrial field to completely eliminate“black carbon”.The development of carbon industry technical system takes carbon emission reduction,zero carbon,negative carbon and carbon economy as the connotation,and the construction of a low-cost and energy-efficient carbon industry system based on CCUS/CCS are strategic measures to achieve the goal of carbon neutrality and clean energy utilization globally.This will promote the“four 80%s”transformation of China's energy supply,namely,to 2060,the percentage of zero-carbon new energy in the energy consumption will be over 80%and the CO_(2) emission will be decreased by 80%to ensure the carbon emission reduction of total 80×10^(8) t from the percentage of carbon-based fossil energy in the energy consumption of over 80%,and the percentage of CO_(2) emission from energy of over 80%in 2021.The carbon industry in China is facing three challenges,large CO_(2) emissions,high percentage of coal in energy consumption,and poor innovative system.Three strategic measures are proposed accordingly,including:(1)unswervingly develop carbon industrial system and ensure the achievement of carbon neutrality as scheduled by 2060;(2)vigorously develop new energy sources and promote a revolutionary transformation of China’s energy production and consumption structure;(3)accelerate the establishment of scientific and technological innovation system of the whole CO_(2) industry.It is of great significance for continuously optimization of ecological environment and construction of green earth and ecological earth to develop the carbon industry system,utilize clean energy,and achieve the strategic goal of global carbon neutrality. 展开更多
关键词 carbon industry system carbon neutrality carbon sequestration green earth carbon footprint carbon trade peak carbon dioxide emission dual carbon target
下载PDF
Passive daytime radiative cooling coatings with renewable self-cleaning functions
8
作者 Qian Wu Yubo Cui +7 位作者 Guifeng Xia Jinlong Yang Shuming Du Xinhong Xiong Li Yang Dong Xu Xu Deng Jiaxi Cui 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期257-262,共6页
Passive daytime radiative cooling(PDRC)technology is emerging as one of the most promising solutions to the global problem of spacing cooling,but its practical application is limited due to reduced cooling effectivene... Passive daytime radiative cooling(PDRC)technology is emerging as one of the most promising solutions to the global problem of spacing cooling,but its practical application is limited due to reduced cooling effectiveness caused by daily wear and tear,as well as dirt contamination.To tackle this problem,we report a novel strategy by introducing a renewable armor structure for prolonging the anti-fouling and cooling effectiveness properties of the PDRC coatings.The armor structure is designed by decorating fluorinated hollow glass microspheres(HGM)inside rigid resin composite matrices.The HGM serve triple purposes,including providing isolated cavities for enhanced solar reflectance,reinforcing the matrices to form robust armored structures,and increasing thermal emittance.When the coatings are worn,the HGM on the surface expose their concave cavities with numerous hydrophobic fragments,generating a highly rough surface that guarantee the superhydrophobic function.The coatings show a high sunlight reflectance(0.93)and thermal emittance(0.94)in the long-wave infrared window,leading to a cooling of 5℃ below ambient temperature under high solar flux(∼900 W/m^(2)).When anti-fouling functions are reduced,they can be regenerated more than 100 cycles without compromising the PDRC function by simple wearing treatment.Furthermore,these coatings can be easily prepared using a one-pot spray method with low-cost materials,exhibit strong adhesion to a variety of substrates,and demonstrate exceptional environmental stability.Therefore,we anticipate their immediate application opportunities for spacing cooling. 展开更多
关键词 SUPERHYDROPHOBIC Passive radiative cooling WEARING Regeneration Glass resin armor
原文传递
Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation 被引量:7
9
作者 李雄威 毛向雷 +1 位作者 王哲 Richard E.RUSSO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第11期928-932,共5页
The carbon content of bituminous coal samples was analyzed by laser-induced breakdown spectroscopy. The 266 nm laser radiation was utilized for laser ablation and plasma generation in air. The partial least square met... The carbon content of bituminous coal samples was analyzed by laser-induced breakdown spectroscopy. The 266 nm laser radiation was utilized for laser ablation and plasma generation in air. The partial least square method and the dominant factor bused PLS method were used to improve the measurement accuracy of the carbon content of coal. The results showed that the PLS model could achieve good measurement accuracy, and the dominant factor based PLS model could further improve the measurement accuracy. The coefficient of determination and the root-mean-square error of prediction of the PLS model were 0.97 and 2.19%, respectively; and those values for the dominant factor based PLS model were 0.99 and 1.51%, respectively. The results demonstrated that the 266 nm wavelength could accurately measure the carbon content of bituminous coal. 展开更多
关键词 LIBS COAL carbon content PLS quantitative measurement
下载PDF
Pt-Co single atom alloy catalysts: Accelerated water dissociation and hydrogen evolution by strain regulation 被引量:3
10
作者 Rendian Wan Mi Luo +3 位作者 Jingbo Wen Shilong Liu Xiongwu Kang Yong Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期44-53,I0002,共11页
The alkaline hydrogen evolution reaction(HER) on Pt-based catalysts is largely limited by the slow water dissociation kinetics. Pt-based single atom alloy catalysts(SAAC) with water dissociation sites have been demons... The alkaline hydrogen evolution reaction(HER) on Pt-based catalysts is largely limited by the slow water dissociation kinetics. Pt-based single atom alloy catalysts(SAAC) with water dissociation sites have been demonstrated as excellent alkaline HER catalysts. However, the regulation of their activity and stability at the atomic scale is still a great challenge. Herein, the kinetic and stability issues are successfully resolved via engineering the electronic structure of Pt-Co SAAC by Au-induced tensile strain. The atomic dispersion of Co into the Pt shell was confirmed by extended X-ray absorption fine structure and the electronic structure and catalytic HER performance was modulated by the tensile strain induced by the Pt shell thickness. An inverse volcano-type relation between HER activity and surface strain was found.Density functional theory(DFT) calculations reveal that the Au-induced tensile strain on Pt-Co shell can not only boost the adsorption and dissociation kinetics of water at Co site by upshifting the dband and promoting the electron transfer, but also downshift the d-band center of Pt in Pt-Co shell, leading to optimized H* adsorption/desorption. The champion catalyst provides an overpotential of only 14 m V at the current density of 10 mA cm^(-2). This work not only provides an effective strategy for the construction of single-atom alloy electrocatalysts for high performance toward alkaline HER but also sheds light on the understanding of the reaction mechanism at the atomic level. 展开更多
关键词 Hydrogen evolution reaction Single atom alloy STRAIN DFT calculation d-band
下载PDF
The electrocatalytic activity of BaTiO3 nanoparticles towards polysulfides enables high-performance lithium-sulfur batteries 被引量:3
11
作者 Hongcheng Gao Shunlian Ning +4 位作者 Jiasui Zou Shuang Men Yuan Zhou Xiujun Wang Xiongwu Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期208-216,I0007,共10页
The slow redox dynamics and dissolution of polysulfides in lithium-sulfur(Li-S)batteries result in poor rate performance and rapid decay of battery capacity,thus limiting their practical application.Ferroelectric bari... The slow redox dynamics and dissolution of polysulfides in lithium-sulfur(Li-S)batteries result in poor rate performance and rapid decay of battery capacity,thus limiting their practical application.Ferroelectric barium titanate(BT)nanoparticles have been reported to effectively improve the electrochemical performance of Li-S batteries due to the inherent self-polarization and high adsorption capacity of the BT nanoparticles towards polysulfides.Here in this paper,BT nanoparticles,behave as highly efficient electrocatalyst and demonstrate much higher redox dynamics towards the conversion reaction of polysulfides and Li2S than TiO2,as shown by both electrochemical measurements and density functional theory calculation.The coupling of the sulfur host of the hollow and graphitic carbon flakes(HGCF)and the BT nanoparticles(HGCF/S-BT)enable excellent electrochemical performance of Li-S batteries,delivering a0.047%capacity decay per cycle in 1000 cycles at 1 C,788 mAh g^-1 at 2 C and a reversible capacity of613 mAh g^-1 after 300 cycles at a current density of 0.5 C at a S loading of 3.4 mg cm^-2.HGCF/S-BT also shows great promise for practical application in flexible devices as demonstrated on the soft-packaged Li-S batteries. 展开更多
关键词 ELECTROCATALYSIS Redox reaction Li-S battery POLYSULFIDE DFT calculation
下载PDF
Accuracy improvement of quantitative analysis of calorific value of coal by combining support vector machine and partial least square methods in laser-induced breakdown spectroscopy 被引量:2
12
作者 李雄威 杨阳 +2 位作者 李庚达 陈保卫 胡文森 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第7期105-109,共5页
Laser-induced breakdown spectroscopy(LIBS) is a potential technology for online coal property analysis,but successful quantitative measurement of calorific value using LIBS suffers from relatively low accuracy caused ... Laser-induced breakdown spectroscopy(LIBS) is a potential technology for online coal property analysis,but successful quantitative measurement of calorific value using LIBS suffers from relatively low accuracy caused by the matrix effect.To solve this problem,the support vector machine(SVM) and the partial least square(PLS) were combined to increase the measurement accuracy of calorific value in this study.The combination model utilized SVM to classify coal samples into two groups according to their volatile matter contents to reduce the matrix effect,and then applied PLS to establish calibration models for each sample group respectively.The proposed model was applied to the measurement of calorific values of 53 coal samples,showing that the proposed model could greatly increase accuracy of the measurement of calorific values.Compared with the traditional PLS method,the coefficient of determination(R2) was improved from 0.93 to 0.97,the root-mean-square error of prediction was reduced from 1.68 MJ kg-1 to1.08 MJ kg-1,and the average relative error was decreased from 6.7% to 3.93%,showing an overall improvement. 展开更多
关键词 accuracy improvement calorific value COAL PLS SVM LIBS
下载PDF
Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology 被引量:2
13
作者 Jianghua Ling Penny Xiao +3 位作者 Augustine Ntiamoah Dong Xu Paul Webley Yuchun Zhai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第4期460-467,共8页
Different VSA(Vacuum Swing Adsorption) cycles and process schemes have been evaluated to find suitable process configurations for effectively separating CO2 from flue gases from different industrial sectors. The cycle... Different VSA(Vacuum Swing Adsorption) cycles and process schemes have been evaluated to find suitable process configurations for effectively separating CO2 from flue gases from different industrial sectors. The cycles were studied using an adsorption simulator developed in our research group, which has been successfully used to predict experimental results over several years. Commercial zeolite APGIII and granular activated carbon were used as the adsorbents. Three-bed VSA cycles with- and without-product purge and 2-stage VSA systems have been investigated. It was found that for a feed gas containing 15% CO2(representing flue gas from power plants), high CO2 purities and recoveries could be obtained using a three-bed zeolite APGIII VSA unit for one stage capture, but with more stringent conditions such as deeper vacuum pressures of 1–3 k Pa. 2-stage VSA process operated in series allowed us to use simple process steps and operate at more realistic vacuum pressures. With a vacuum pressure of 10 k Pa, final CO2 purity of 95.3% with a recovery of 98.2% were obtained at specific power consumption of 0.55 MJ·(kg CO2)-1from feed gas containing15% CO2. These numbers compare very well with those obtained from a single stage process operating at1 k Pa vacuum pressure. The feed CO2 concentration was very influential in determining the desorption pressure necessary to achieve high separation efficiency. For feed gases containing N 30% CO2, a singlestage VSA capture process operating at moderate vacuum pressure and without a product purge, can achieve very high product purities and recoveries. 展开更多
关键词 二氧化碳浓度 变压吸附技术 真空变压吸附 捕捉 CO2原料气 排放源 真空压力 产品纯度
下载PDF
A 150000 t·a^(-1) Post-Combustion Carbon Capture and Storage Demonstration Project for Coal-Fired Power Plants 被引量:3
14
作者 Qingru Cui Rui Zhao +4 位作者 Tiankun Wang Shuai Zhang Yan Huang Yongzheng Gu Dong Xu 《Engineering》 SCIE EI CAS 2022年第7期22-26,共5页
1.Introduction Climate change is one of the most severe challenges facing the world today.At present,China produces total annual carbon dioxide(CO_(2))emissions of over 10 billion tonnes,topping the world in this rega... 1.Introduction Climate change is one of the most severe challenges facing the world today.At present,China produces total annual carbon dioxide(CO_(2))emissions of over 10 billion tonnes,topping the world in this regard.Although coal empowers China’s economic development,its use presents a great challenge to the nation’s desired goals of peaking carbon emissions and achieving carbon neutrality.In this context,the low-carbon utilization of coal is an inevitable trend for future development.Exploring new ways to reduce CO_(2) emissions on a large scale in the utilization of coal—especially during coal-fired power generation—is essential in order for China to achieve carbon neutrality. 展开更多
关键词 NEUTRAL EMISSIONS STORAGE
下载PDF
Pyrrole derivatives as interlayer modifier of Li-S batteries:Modulation of electrochemical performance by molecular perturbation 被引量:2
15
作者 Jiajv Lin Yuan Zhou +4 位作者 Jingbo Wen Weijie Si Hongcheng Gao Gongming Wang Xiongwu Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期164-172,I0005,共10页
The electrochemical performance of lithium-sulfur(Li-S)batteries is strongly hampered by the shuttle effect and slow redox kinetics of lithium polysulfides(Li PSs).Surface modified interlayer of a separator of Li-S ba... The electrochemical performance of lithium-sulfur(Li-S)batteries is strongly hampered by the shuttle effect and slow redox kinetics of lithium polysulfides(Li PSs).Surface modified interlayer of a separator of Li-S batteries is demonstrated to be an effective strategy to overcome this problem.Herein,cobalt nanoparticles confined in nitrogen co-doped porous carbon framework(Co-CN)were developed from pyrolysis of ZIF-67 and used as interlayer of PP separator for Li-S batteries,and were functionalized by four pyrrole derivatives,1-phenylpyrrole,1-methyl pyrrole,1-(p-toluenesulfonyl)pyrrole,and 1-pyrrole,respectively,which were screened in terms of the electron-withdrawing/donating ability of the substituent groups on the pyrrolic nitrogen.The impact of the molecular structure of pyrrole derivatives on the interaction with Li PSs and the electrochemical performance of Li-S batteries were explored by nuclear magnetic resonance and theoretical calculation.It is uncovered that 1-phenylpyrrole shows the highest enhancement of redox kinetics of Li PSs,attributing to the optimal interaction with Co nanoparticles and Li PSs.Therefore,1-phenylpyrrole modified Co-CN interlayer enables the best electrochemical performance for the Li-S batteries,delivering a specific capacity of 562 m Ah g^(-1)at 5 C and a capacity of 538,526,and 449 m Ah g^(-1)after 500 cycles at 1,2,and 3 C,respectively.At a high sulfur loading of 5.5 mg cm^(-2),it achieves a capacity of 440 m Ah g^(-1)after 500 cycles at 1 C.This work reveals the interaction mechanism among Li PSs,Co nanoparticles and the molecular modifiers in improving the electrochemical performance of Li-S batteries. 展开更多
关键词 Pyrrole derivatives Surface modification INTERLAYER CATALYSIS Redox kinetics
下载PDF
The synthesis and application of zeolitic material from fly ash by one-pot method at low temperature 被引量:3
16
作者 Jialin Yu Yang Yang +4 位作者 Wenting Chen Dong Xu Hua Guo Kevin Li Hanqiang Liu 《Green Energy & Environment》 SCIE 2016年第2期166-171,共6页
A new route to prepare zeolitic material was introduced in this work. Compared with traditional methods, the new route showed lower energy consume. The effect of pre-treatment conditions on structure and crystalline p... A new route to prepare zeolitic material was introduced in this work. Compared with traditional methods, the new route showed lower energy consume. The effect of pre-treatment conditions on structure and crystalline phase was investigated, revealing that the mullite crystalline phase in fly ash could be converted to amorphous phase by alkali at low temperature. The removal performance of heavy metal ions on designed material was also investigated, and we found that the intermediate product showed higher adsorption capacity on Ni^(2+) than zeolite A. 展开更多
关键词 Fly ash Zeolitic material Removal of heavy metal INTERMEDIATE
下载PDF
LSM-infiltrated LSCF cathodes for solid oxide fuel cells 被引量:1
17
作者 Ze Liu Mingfei Liu +1 位作者 Lei Yang Meilin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期555-559,共5页
Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-y O3-δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we rep... Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-y O3-δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we report our findings on the effect of a thin film coating of La0.85Sr0.15MnO3-δ (LSM) on the performance of a porous La0.6Sr0.4Co0.2Feo.8O3-δ(LSCF) cathode. When the thicknesses of the LSM coatings are appropriate, an LSM-coated LSCF electrode showed better stability and lower polarization (or higher activity) than the blank LSCF cathode without LSM infiltration. An anode-supported cell with an LSM-infiltrated LSCF cathode demonstrated at 825 ℃ a peak power density of -1.07 W/cm2, about 24% higher than that of the same cell without LSM infiltration (-0.86 W/cm2). Further, the LSM coating enhanced the stability of the electrode; there was little degradation in performance for the cell with an LSM-infiltrated LSCF cathode during 100 h operation. 展开更多
关键词 solid oxide fuel cell (SOFC) La0.6Sr0.4Co0.2Fe0.8O3- (LSCF) La0.85Sr0.15 MnO3-6 (LSM) INFILTRATION cathode
下载PDF
Recent progress in synthesis and surface modification of nickel-rich layered oxide cathode materials for lithium-ion batteries 被引量:1
18
作者 Jing Li Wentao Zhong +2 位作者 Qiang Deng Qimeng Zhang Chenghao Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期102-146,共45页
Nickel-rich layered oxides have been identified as the most promising commercial cathode materials for lithium-ion batteries(LIBs)for their high theoretical specific capacity.However,the poor cycling stability of nick... Nickel-rich layered oxides have been identified as the most promising commercial cathode materials for lithium-ion batteries(LIBs)for their high theoretical specific capacity.However,the poor cycling stability of nickel-rich cathode materials is one of the major barriers for the large-scale usage of LIBs.The existing obstructions that suppress the capacity degradation of nickel-rich cathode materials are as a result of phase transition,mechanical instability,intergranular cracks,side reaction,oxygen loss,and thermal instability during cycling.Core–shell structures,oxidating precursors,electrolyte additives,doping/coating and synthesizing single crystals have been identified as effective methods to improve cycling stability of nickel-rich cathode materials.Herein,recent progress of surface modification,e.g.coating and doping,in nickel-rich cathode materials are summarized based on Periodic table to provide a clear understanding.Electrochemical performances and mechanisms of modified structure are discussed in detail.It is hoped that an overview of synthesis and surface modification can be presented and a perspective of nickel-rich materials in LIBs can be given. 展开更多
关键词 nickel-rich layered oxides capacity degradation surface modification single-crystal cathode
下载PDF
In sight of K-deficient layered K_(x)MnO_(2) cathode for potassium-ions batteries 被引量:2
19
作者 Tiezhong Liu Shuang Hou +5 位作者 Youpeng Li Shoufeng Xue Junhua Hu Haikuo Fu Chenghao Yang Lingzhi Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期335-343,I0009,共10页
Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches ... Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode materials for PIBs are badly absent.Herein,we synthesize K-deficient layered manganese-based oxides(P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2))and investigate them as cathode of PIBs for the first time.As the newcomer of potassium-containing layered manganese-based oxides(K_(x)MnO_(2))group,P2-K_(0.21)MnO_(2) delivers high discharge capacity of 99.3 mAh g^(-1) and P3-K_(0.23)MnO_(2) exhibits remarkable capacity retention rate of 75.5%.Besides,in-situ XRD and ex-situ XRD measurements reveal the reversible phase transition of P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2) with the potassium-ions extraction and reinsertion,respectively.This work contributes to a better understanding for the potassium storage in K-deficient layered K_(x)MnO_(2)(x≤0.23),possessing an important basic scientific significance for the exploitation and application of layered K_(x)MnO_(2) in PIBs. 展开更多
关键词 Potassium-ions battery CATHODE Layered K_(x)MnO_(2) P2/P3-type structure Low potassium content
下载PDF
Quasi-solid state synthesis of EU-1 zeolite and its catalytic properties for the isomerization of C_8 aromatics 被引量:1
20
作者 Gui Peng Li Xiaofeng +2 位作者 Zhang Shang Xu Qinghu Dou Tao 《Petroleum Science》 SCIE CAS CSCD 2012年第4期544-550,共7页
In this study,EU-1 zeolite was successfully synthesized via a quasi-solid state approach and assembled to catalyst for the C 8 aromatics isomerization process.The catalytic properties were tuned through careful modifi... In this study,EU-1 zeolite was successfully synthesized via a quasi-solid state approach and assembled to catalyst for the C 8 aromatics isomerization process.The catalytic properties were tuned through careful modification of the acidity of EU-1 zeolites and metal-doping of the catalyst.It was shown that EU-1 was an excellent candidate for the C 8 aromatics isomerization process due to its unique structure.In addition,steam treatment of EU-1 at 450-500 ℃ could optimize the acidic properties of the catalyst,hence enhance its catalytic performance.The effect of the amount of Pt on ethylbenzene conversion was studied and the optimum amount was determined to be about 0.3-0.4 wt%.It was confirmed that EU-1 zeolite prepared via a quasi-solid state approach and then dealuminated by steam treatment had better activity and selectivity than conventional mordenite(MOR) zeolite and could be an excellent candidate for C 8 aromatics isomerization. 展开更多
关键词 EU-1 zeolite ACIDITY metallic function ISOMERIZATION
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部