期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Memristive Artificial Synapses for Neuromorphic Computing 被引量:4
1
作者 Wen Huang Xuwen Xia +6 位作者 Chen Zhu Parker Steichen Weidong Quan Weiwei Mao Jianping Yang Liang Chu Xing’ao Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期218-245,共28页
Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memri... Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memristive hardware neural networks in which synaptic devices that mimic biological synapses of the brain are the primary units.Mimicking synaptic functions with these devices is critical in neuromorphic systems.In the last decade,electrical and optical signals have been incorporated into the synaptic devices and promoted the simulation of various synaptic functions.In this review,these devices are discussed by categorizing them into electrically stimulated,optically stimulated,and photoelectric synergetic synaptic devices based on stimulation of electrical and optical signals.The working mechanisms of the devices are analyzed in detail.This is followed by a discussion of the progress in mimicking synaptic functions.In addition,existing application scenarios of various synaptic devices are outlined.Furthermore,the performances and future development of the synaptic devices that could be significant for building efficient neuromorphic systems are prospected. 展开更多
关键词 Synaptic devices Neuromorphic computing Electrical pulses Optical pulses Photoelectric synergetic effects
下载PDF
Anisotropic transport in a possible quasi-one-dimensional topological candidate:TaNi_(2)Te_(3)
2
作者 Yi Liu Chun-Qiang Xu +10 位作者 Wen-He Jiao Ping-Gen Cai Bin Li Wei Zhou Bin Qian Xue-Fan Jiang Kalaivaman R Raman Sankar Xiang-Lin Ke Guang-Han Cao Xiao-Feng Xu 《Tungsten》 EI CSCD 2023年第3期325-331,共7页
We report on the solid-state synthesis and the strongly anisotropic transport properties of the ternary telluride TaNi_(2)Te_(3),whose three orthogonal resistivity coefficients exhibit a large ratio of 1.4:1:2294(14:1... We report on the solid-state synthesis and the strongly anisotropic transport properties of the ternary telluride TaNi_(2)Te_(3),whose three orthogonal resistivity coefficients exhibit a large ratio of 1.4:1:2294(14:1:2303) at 300 K(2 K),thereby demonstrating its quasi-one-dimensional(q1D) electronic structure.The Kohler’ s rule in different current/field configurations shows a moderate violation.Its one dimensionality manifests itself in the needle-like shape of crystal,the large anisotropic resistivity and the flat Fermi surface normal to the chain direction.Moreover,the first-principles calculations also provide evidence for the existence of the nontrivial topological carriers in this q1D system.Our calculation demonstrates that TaNi_(2)Te_(3) is a strong topological nontrivial material with topological indices(1;1 0 1) and its nontrivial topology is also evidenced from its bulk-surface correspondence.Our study may therefore offer a new platform for engineering the topologically nontrivial phase in low-dimensional materials,in analogy to the recently discovered q1D topological TaNiTe_(5). 展开更多
关键词 Topological materials-Quasi-one-dimensionality TELLURIDE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部